植生がわんど内流れに及ぼす影響に関する研究

名古屋工業大学大学院	学生員	○阪巻 実佳	名古屋市	久田 陽史
名古屋工業大学大学院	学生員	田本 典秀	名古屋工業大学 正会員	冨永 晃宏

<u>1. はじめに</u>

近年,多自然型川づくりや生態系保全の重要性が認識 されはじめ、河川の生態系に良好な環境を提供する場と して「わんど」が注目されている.わんどは河道の中に 存在する止水域であり、主流部に比べて流れが緩やかで あることなどから、他と異なる空間を創造することが可 能である.わんどの水域や水辺に作られる各種の植物群 落は、多様な生物の生息、生育環境の基礎となるもので ある.一方で、植生が繁茂することによって、わんど内 への流入が弱まり、水交換が阻害されることが考えられ る.本研究では、わんど内の植生が流れに及ぼす影響に ついて、実験と数値計算によって検討した.

2. 実験条件

実験水路は,長さ4m,幅30cm,勾配1/2000のアクリ ル製長方形断面水路を用い,水路右岸をアクリル板によ り遮蔽し,一区間のみ開放区を設けることでわんどとし た.わんどの形状は開口幅15cm,奥行き10cmとし,ア スペクト比(開口幅/奥行き)を1.5とした.流量は21/s, 水深はわんど域の主流部で4cmとなるように調節した. 植生模型としてわんど内部に直径0.3cm,長さ6cmの木 棒を0.9cm間隔で配置した.実験ケースを図1に示す. 流速計測にはPIV可視化装置を用い,高速ビデオカメラ を用いて1/120sで撮影された可視化画像を,相互相関法 により画像解析し,約16秒間の流速ベクトルデータを取 得した.

図1 実験ケース

表	1	モ	デ	N	閭	数
~	-	_		· · ·	1254	~~

	D	Ε	f_{μ}	f_{I}	f_2
標準型	0	0	1.0	1.0	1.0
Launder-Sharma	$2v \left(\frac{\partial \sqrt{k}}{\partial y}\right)^2$	$2vv_t \left(\frac{\partial^2 \overline{U}}{\partial y^2}\right)^2$	$\exp\left[\frac{-3.4}{\left(1+Rt/50\right)^2}\right]$	1.0	$1 - 0.3 \exp\left(-Rt^2\right)$

キーワード:わんど、植生、PIV、数値計算

3. 数値解析の手法

本研究で用いた水深平均の連続式および開水路浅水流 方程式は以下の通りである.

$\frac{\partial h}{\partial t}$ +	$\frac{\partial Uh}{\partial x} + \frac{\partial Uh}{\partial x}$	$\frac{\partial Vh}{\partial y} = 0$					(1)
$\frac{\partial U}{\partial t}$	$+\frac{\partial UU}{\partial x}$	$+\frac{\partial UV}{\partial y} =$	$-g\frac{\partial H}{\partial x}$	$+\frac{\partial}{\partial x}\frac{\tau_{xx}}{\rho}$	$+\frac{\partial}{\partial y}\frac{\tau_{xy}}{\rho}$	$-\frac{\tau_{bx}}{\rho}$	(2)
∂V	$\frac{\partial UV}{\partial UV}$	$\frac{\partial VV}{\partial VV}$ _	$-\alpha \frac{\partial H}{\partial H}$	$\partial \tau_{xy}$	$\partial \tau_{yy}$	τ_{by}	(3)
∂t	∂x	∂v	⁵ ∂v ′	$\partial x \rho$	dvρ	ρ	

ここにhは水深, U, V はそれぞれ主流, 横断方向水深 平均流速, τ_{bx} , τ_{by} は底面せん断応力である.水深平均 レイノルズ応力 τ_{xx} , τ_{xy} , τ_{yy} は渦動粘性係数 ν_t を用い て次式で表される.

$$\tau_{xx} = \rho v_t \left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial x}\right) - \frac{2}{3} k, \tau_{xy} = \rho v_t \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right), \tau_{yy} = \rho v_t \left(\frac{\partial V}{\partial y} + \frac{\partial V}{\partial y}\right) - \frac{2}{3} k$$

$$v_t = C_\mu f_\mu \frac{k^2}{z}$$
(5)

ここに, C_{μ} , f_{μ} はモデル定数, k は乱れエネルギー, ϵ は乱れエネルギーの逸散率である. 低レイノルズ k- ϵ モ デルの輸送方程式は次のようである¹⁾.

$$\frac{\partial k}{\partial t} + \frac{\partial Uk}{\partial x} + \frac{\partial Vk}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_{t}}{\sigma_{k}} \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_{t}}{\sigma_{k}} \frac{\partial k}{\partial y} \right) + G - (\overline{\varepsilon} + D) + P_{kv} \quad (6)$$

$$\frac{\partial \overline{\varepsilon}}{\partial t} + \frac{\partial U\overline{\varepsilon}}{\partial x} + \frac{\partial V\overline{\varepsilon}}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_{t}}{\sigma_{\varepsilon}} \frac{\partial \overline{\varepsilon}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_{t}}{\sigma_{\varepsilon}} \frac{\partial \overline{\varepsilon}}{\partial y} \right) + c_{1}f_{1} \frac{\overline{\varepsilon}}{k} G - c_{2}f_{2} \frac{\overline{\varepsilon}^{2}}{k} + E + P_{Ev} \quad (7)$$

$$\overline{\varepsilon} = \varepsilon - 2v \left(\frac{\partial \sqrt{k}}{\partial y} \right)^{2} \quad (8)$$

ここに、*G*は乱れエネルギー発生率であり、*D*、*E*、*f*₁、 *f*₂はモデル関数、*c*₁、*c*₂、 σ_k 、 σ_z は係数でありモデルに よって異なる.ここでは標準型と Launder- Sharma の低レ イノルズモデルを用い、表 1 のように与えた.また *c*₁、 *c*₂、 σ_k 、 σ_z は標準値を与えた. P_{kv} 、 P_{zv} は水深平均に 伴う付加生成項である.運動方程式の離散化には有限体 積法を、移流項にはハイブリッド法を用い、時間項には 完全陰解法を用いている.計算格子は開口部と壁面近傍 を細かくした不等間隔格子系(最小格子幅 1mm)を用いた.

4. 実験結果と考察

植生の繁茂する位置がわんど内の流れに及ぼす影響に ついて検討する.図2に、wb、wo4、ws4の各ケースに ついて PIV 計測による時間平均流速ベクトルを示す.わ んど内に何も設置していないケース wb では、わんど壁 面に沿うような時計回りの大きな循環流が形成される.

連絡先:〒466-8555 名古屋市昭和区御器所町 名古屋工業大学工学部社会開発工学科 Tel. 052-735-5490

図4 低レイノルズk-εモデルに 図5 低レイノルズk-εモデルによる流速ベクトル(左から wo2,wo4,ws4) よる流速ベクトル(wb)

この流れはわんどにより急拡した主流域の流れがわんど 下流部の壁面に衝突することを発端としたものである. わんど奥部に植生を配置したケース wo4 では、わんど内 に入り込んだ流れが植生によって減速されることで上流 側まで到達せず, 規模が縮小し下流側に移動した循環流 となっている. 上流側の流れは弱く, 周期的に主流部へ 流れ出る方向へ少しずつ動いている様子が高速ビデオカ メラの映像によって確認された. 上流側ではこのように して緩やかに水交換がなされるものと考えられる.次に、 わんど下流側に植生を配置したケース ws4 では,開口部 付近の植生内に入り込んだ流れがそのまま植生奥部で押 し出されるようにして開口部へと向かう様子が見られた. 下流側開口部付近に小さな循環流が形成されているが, 全体的にわんど内の流れは非常に弱いものである.わん ど下流部に植生が存在する場合は、下流部の壁に衝突す る直前に植生によって減速されるため、わんど内への流 入が少なくなり循環流も小さくなるものと考えられる.

5. 計算結果と実験結果の比較検討

数値計算の手法として,標準型 k- ϵ モデルで 3mm 等間隔格子を用いる従来の方法と低レイノルズ k- ϵ モデル で不等間隔格子を用いる方法で,わんど内流れの再現性の比較を行った.図3にケース wb におけるわんどの中

心を通る断面での主流方向流速分布と横断方向流速分布 を示す.計算値は両者とも過大評価となっているが、低 レイノルズ k-εモデルでは壁面近くが減速されており, 全体的にも標準型より実験値に近くなっている.図4に 低レイノルズ k-εモデルによるケース wb の流速ベクト ルを示す.循環流の形状は実験値とよく一致している. 本計算では植生モデルを格子を遮蔽することによって表 現しているため、各遮蔽格子の壁面効果を的確に再現す ることが必要とされる.したがって壁面の影響をより精 度よく表現できる低レイノルズk-εモデルを用いた数値 計算を行った.図5にケース wo2, wo4, ws4 における 低レイノルズ k-εモデルを用いた数値解析結果を示す. わんど奥に植生があるケースでは植生によってわんど上 流へ向かう流れが抑制され、植生幅の増大に伴い循環流 の奥行きが狭められて下流側の狭い領域のみに発生する 特性が予測されている.ケース ws4 では計算値は植生域 外の,特にわんど上流部の横断流速が大きく現れ,実験 と異なる印象を与えている.計算値はわんど内の循環流 を過大に再現している、この点については今後モデルを 改善する必要がある.

6. おわりに

わんど内に繁茂する植生がわんど内流れに及ぼす影響 を、PIV による流速計測と数値解析により検討した結 果、わんど内に繁茂する植生の影響が大きいことが明 らかになった.特に下流側の岸に帯状に植生が繁茂し た場合には、わんど内の水交換が大きく阻害されるこ とが示された.

<参考文献>

1) 数值流体力学編集委員会編:乱流解析, p.38-47, 1995.