複断面直線流路に発生する平面渦の構造と平面二次元二層モデルによる解析

中央コンサルタンツ株式会社	正会員	錦織庄吾	広島大学大学院	フェロー会員	福岡捷二
広島大学大学院	正会員	渡邊明英	国土交通省	正会員	時岡利和

1.はじめに

複断面流路の低水路と高水敷の境界部分(以下,境界部) において流速差に起因した平面渦が発生することが知られ ている.この平面渦は低水路・高水敷間の物質輸送や抵抗 特性の複雑化をもたらし,流れの構造を支配する重要な現 象のひとつである.本研究では相対水深(Dr)の変化が,大 規模平面渦とその構造に及ぼす影響を実験的に明らかにす る.さらに,平面二次元二層数値モデルを用いて流れと渦 構造を再現し,水平混合が卓越する流れ場におけるモデル の適合性を検討する.

2. 実験概要

実験水路は水路長 21.5m,水路床勾配 1/1000 の固定床 複断面直線水路である.図-1 に実験水路の横断面図を示 す.高水敷には,低水路内よりも大きな粗度を与えてい る(低水路粗度係数 n_m=0.012,高水敷粗度係数 n_f=0.020). 表-1 に示す条件で実験を行い,平面渦をアルミニウム紛 末により可視化する流況をビデオカメラにより撮影し, その映像から渦の周期,波長などの渦の平面構造を観察 し,相対水深との関係を考察する.また,流速変動を 20Hz で 60 秒間測定し,得られた波形のスペクトル解析から卓 越周期を求める.

3. 平面渦の特性と相対水深の関係

図-2 に,各ケースの平面流況と,時間平均主流速の横 断分布形を示す.Case1(Dr=0.28)では,境界部で大きな流 速差を有するが,高水敷上水深が小さく,粗度の影響を 大きく受けるため,渦が高水敷上に発達できない.相対 水深が大きくなると,平面渦の規模は拡大する.やがて Case2(Dr=0.42)のように明確な周期性を有する渦列が規 則的に存在できるようになる.両岸の大規模平面渦は互 いに干渉し合いながら流下方向に移動し,低水路内の流 れを蛇行させる.この場合,平面渦が流れに対して支配 的であるため,渦が発生している境界部付近では,流速 は明確な周期性をもって大きく変動する.さらに相対水 深が大きくなると,高水敷上でも流速が大きくなる.こ

表-1 実験条件

(a) Case1 (Dr=0.28)

(b) Case2 (Dr=0.42)

(c) Case3 (Dr=0.61)図-2 各ケース流況

キーワード 平面渦,相対水深,数値解析,複断面水路

連絡先 広島大学大学院工学研究科社会環境システム専攻 〒739-8527 東広島市鏡山 1-4-1 Tel&Fax(0824)24-7821

のため境界部での流速差が小さくなる.さらに,水深が大きいため,混合が3次元的になり,Case3(Dr=0.61)に示すように規則的な大規模渦が存在できなくなる.

4. 平面二次元二層モデルによる平面渦の数値解析

河岸近傍樹木群により水深全体で平面渦が形成される場合には 平面二次元モデルは有用である¹⁾.しかし,複断面水路における 水平混合では低水路部における混合強さが高水敷高さを境に異な るため,平面二次元モデルによる混合領域,流速横断分布の再現 性が低い.本文では静水圧近似平面二次元二層モデルを用い,規 則的な大規模平面渦が発生し,水平混合が卓越する実験 Case 2 の 再現計算を行う.基礎式は,流下方向,横断方向の運動方程式及

図-6 解析結果 (水位コンター図)

び連続式である.大規模渦の周期性を考慮し,上下流端で周期境界条件を課し,流下方向の離散化にはスペ クトル法を用いる.解析には平均水位を与え,図-3に示すように平均流速横断分布(及び流量)が実験結果 と一致するように粗度係数の値を設定している.図-4に実験及び解析における境界部主流速の時間変動を示 す.実験 Case 2 では15s~28s 時に大規模渦が通過し,大きな流速変動が生じている.解析結果は変動周期, 変動幅共によく表している.これらを線スペクトルで比較して図-5 に示す.卓越周期は共に約6秒であり, スペクトル分布も概ね再現されている.一方,実験 Case 3 では高周波成分の流速変動が卓越するようになり, 周期性が不明瞭になる.解析でも変動幅,周期共に小さくなるが,高周波成分や流れの3次元性の影響を取 り入れていないため再現性が低かった.図-6 に Case 2 における解析結果の水位コンター図を示す.渦中心を 示す水位低下位置の間隔から,解析結果の渦波長は1.55m であり,実験結果の渦波長は図-2(b)に示す1.4m である.以上の結果より,本モデルにより平面渦が卓越する流れの2次元構造はよく再現されている.

複断面直線流路における相対水深の変化に伴う平面渦の特性を可視化実験により明らかにした.平面渦構 造は相対水深,低水路と高水敷の粗度との関係に依存すると考えられており,本実験条件では Dr=0.40 程度 で安定した渦が観察され,これよりも相対水深が大きくなると大規模平面渦構造は維持されない.本文で示 した様に複断面水路における規則的な大規模平面渦流れは平面二次元二層モデルで周期,波長,渦構造を再 現可能である.しかし,平面二次元二層モデルでは流れの3次元乱流混合を表せないため,相対水深が大き くなった場合でも運動量交換を起こす仕組みとして計算上平面渦が発生する.平面二次元二層モデルは簡便 なモデルであるが,複断面流れの混合形態に対するモデルの適用条件に対する検討が必要である.

参考文献 1) 福岡捷二,渡邊明英,上阪恒雄,津森貴行:低水路河岸に樹木群のある河道の洪水流の構造 利根川新川通昭和 56 年 8 月洪水 ,土木学会論文集第 509 号, pp.79-88, 1995.