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1. INTRODUCTION

Mathematical models of optimization are techniques
frequently used to support the planning and operation of
reservoirs subject to multiple purposes. They help in
finding an optima set of policies that provide the best
possible alocation of the available water.

In this study, an optimization model is developed and
applied to the operation of the reservoir that supplies the
city of Matsuyama in Ehime Prefecture (Figure 1). The
reservoir, named Ishitegawa Dam, is responsible for half
of the water supply of Matsuyama and is also used for the
irrigation of an area of approximately 550 ha.

Short (real-time) and long term (monthly) operations
are carried out and compared with fictitious simulations.
A discussion is performed on the different outcomes from
the short and long term approaches.

2. THE OPTIMIZATION M ODEL

In principle, the main objective of the operation is to
determine the best amount of water to be alocated for city
supply and irrigation that meet their respective demands to
the greatest extent possible without violaing the
congtraints of the system. Besides, the water level of the
reservoir should be kept as high as possible avoiding a
collapse in periods of shortage. The objective function and
constraints of the model are thus written as below:
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Figure 1. Location and layout of the system.

in which t is the time index; N is the operating horizon;

Q,te| is the amount of water alocated for city supply from
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the reservair; T, is the demand for city supply; Q
the alocation for irrigation from the reservoir;
demand for irrigation; Vg, is the reservoir storage; Vo«
is the capacity of the reservoir; V_qoor is the initial storage;
Vstpil
water that might spill from the weir; Q3™ is the totd

Vs is the inflow to the reservoir; | is the amount of
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capacity of the surface water treatment plants; isthe

capacity of the irrigation system; and V= is the dead
storage of the reservair.
3. RESULTSAND DISCUSSION

Figures 2 and 3 present some results from the
application of mode (1)-(9) to the long and short term
operations of Ishitegawa Dam, respectively. The average
monthly data of inflows of 1997 were used for the
deterministic optimization process. In the long term
operation (monthly), the operating horizon N is equal to 12.
As for the short term real-time operation, N is assumed to
be equal to 5. Consequently, the values of inflows for five
days counting from the current day are considered as
forecasted inflows. Then, the model is run and the optima
dlocations for the five days are found. However, only the
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Figure 2. Results from monthly simulation (g, b, ¢) and long term (monthly) optimization (d, e, f).
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Figure 3. Results from daily ssimulation (a, b, ¢)

dlocations for the present day are used. The procedure is
repeated for the next day and so forth until the fina day of
operaion (end of the year) is reached. For comparison
purposes, fictitious simulations where al the demands
should be met whenever possible, were considered and
compared with the optimal operations. Figures (a), (b) and
(c) show results from simulations while figures (d), (e) and
() illustrate the outcomes from optimization. The modd is
solved by Quadratic Programming (QP). Fgures on the
left display the variaion of the reservoir storage and the
optimal releases along the year. Centered figures consider
only the city supply and show how the dlocations from the
reservoir meet the target demands. Right-sided figures
illustrate how the alocations from the reservoir for
irrigation satisfy the demands.

For the case of the monthly operation, one can see from
the results that the optimization process tries to aleviate
the large difference between alocations and demands
concentrated in some months (simulation) by decreasing
the releases for other months. Thus, if the operation
considers only fulfilling the demands without considering
the future situation, the system may collapse when the
period of shortage comes. The optimization process does
not let this occur.
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(e)
and short term (real-time) optimization (d, g, f).

(f)

As for the red-time operation, the same situation
happens but, in this case, since the operating horizon is
relaively short, it becomes difficult to have a broader
knowledge of the future inflows. Thus, the aleviation
process does not produce a considerable reduction in the
difference between alocations and demands for the critica
periods.

4. CONCLUSIONSAND FURTHER STUDY

In this work, an optimization problem was applied to the
short and long term operations of Ishitegawa Dam in
Matsuyama, Ehime. The results showed that the
optimization model found more reasonable operating
policies than simulations that tried to meet all the demands
without taking the future situation into account. In real-
time short term operation, however, the operating horizon
needs to be long which is not aways possible due to the
inaccuracy of the forecast information. The integration of
short and long term information in red-time is an
important topic for further studies.



