1. まえがき
当り外れのモンテカルロ法は、一般的に、計算量を多く必要とし、計算精度も余り良くないと言われている。しかし、適用範囲が広く、複雑な問題を対象とする場合にも当り外れのモンテカルロ法は有効である。著者はこのような観点から、当り外れのモンテカルロ法を効率化する手法を提案し、その有効性を示した1)。本研究では、そのような方法の基礎となる当り外れのモンテカルロ法について検討を加える。具体的には、土木構造物システムの静的信頼性評価および動的信頼性評価の問題を考える。数値計算例としては、現行設計されたトラス構造物の静的信頼性評価と、縦線1自由度質点系の初通過確率の算定を行う。

2. 構造物の静的信頼性評価
典型的な構造部材である棒部材を考える。棒部材強度をR、部材軸方向力をSとし、SもRもある確率特性に従うものとする。このとき、計算機内でSとRを統計データに従って同時に発生させ、これをN回繰り返した場合、そのうちn回が限界状態R≦Sを満たしたならば、その限界状態確率は近似的に

\[P_f \approx \frac{n}{N} \]

である。このような当り外れのモンテカルロ法（以下、HMMC法）を簡単な効率化するには、S、R等の基本変数の抽出において、解析上必要かつ重要である低頻度領域からの数値を集中的に抽出する方法（低頻度領域集中抽出法）がある。限界状態をN’倍抽出し易く（N’：抽出倍率）すれば、実試行回数のN’倍の試行回数を実施した効果を期待でき、

\[P_f \approx \frac{n}{NN'} \]

と評価できる。限界状態をN’倍抽出し易くするには、\(\text{Prob.}\{R \leq S\} = \frac{1}{N'} \)を満たすRとSを用いれば良い。また、限界状態R≦Sの再現には試行1回で乱数2つが必要だが、そのうち大きい方にS、小さい方にRを対応させれば、さらに2倍の効率化が可能である（大小関係対応抽出法）。なお、本研究では正規変数のSとRを仮定する。乱数は、ボックス・マラー法と棄却法とを組合せ、低頻度領域の乱数発生を改良した渋谷氏による改良型乱数を用いる。

3. 静的信頼性評価の例
図1に示す27部材で構成される下路形式のトラス橋の信頼性評価を行う。本橋は、A活荷重、支間L=50m、幅員6m、使用鋼材SM400の条件で現行設計されている2)。解析では、最も危険な活荷重状態として、上下線それぞれの中央に大型トレーラー2台ずつ（合計4台）が作用する場合を仮定した。大型トレーラー1台当たりの重量は、交通流実態調査結果を参考にして平均10.5tf、分散50.5tf^2とし、正規分布するものとする。また、各部材間の強度\(\sigma_R \)は完全相関を仮定し、引張部材強度は、許容引張応力度\(\sigma_t = 140 \text{N/mm}^2 \)を平均、0.1を変動係数に有する正規分布に従うものとする。圧縮部材の場合は、平均として次式3)(1/rは細長比)の許容圧縮応力度\(\sigma_{ca} \)を持ち、変動係数0.1を有する正規分布を仮定する:

\[\sigma_{ca} = 140 \left(\frac{1}{r} \leq 18 \right), \quad \frac{\sigma_{ca}}{140} = 0.82 (1/r = 18) < \frac{1}{r} \leq 92, \quad \sigma_{ca} = 12000000 \left(\frac{1}{6700 + (1/r)^2} \right) \left(\frac{1}{r} \geq 92 \right) \]

各部材の作用応力\(\sigma \)がその部材の強度\(\sigma_R \)を越える場合を部材の限界状態と考え、構成部材の一つでも限界状態になれば構造系全体の限界状態となるとして、構造系の限界状態確率P_fを評価した。結果を表1～4に示す。N’=100と仮定した。表中、\(\rho \)はP_fの変動係数である。表より効率化の効果を確認することができます。

図1 27部材ワーレントラス橋

Key word: 当り外れ、モンテカルロ法、構造信頼性

連絡先: 〒774-0017 見野町青木 Tel.0884-23-7100
表1 通常HMMC法による構造系の信頼性評価
<table>
<thead>
<tr>
<th>試行回数</th>
<th>確定強度の場合</th>
<th>不確定強度の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.00e+00</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>1000</td>
<td>1.00e-03</td>
<td>1.00e-00</td>
</tr>
<tr>
<td>10000</td>
<td>1.10e-03</td>
<td>2.29e-01</td>
</tr>
<tr>
<td>100000</td>
<td>2.14e-03</td>
<td>6.83e-02</td>
</tr>
</tbody>
</table>

表2 低頻度領域抽出と対応抽出の両方による評価
<table>
<thead>
<tr>
<th>試行回数</th>
<th>確定強度の場合</th>
<th>不確定強度の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>9.33e-04</td>
<td>3.29e+00</td>
</tr>
<tr>
<td>10000</td>
<td>1.86e-03</td>
<td>7.33e-01</td>
</tr>
<tr>
<td>100000</td>
<td>2.12e-03</td>
<td>2.17e-01</td>
</tr>
</tbody>
</table>

表3 大小関係対応抽出法のみによる信頼性評価
<table>
<thead>
<tr>
<th>試行回数</th>
<th>確定強度の場合</th>
<th>不確定強度の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.99e-01</td>
<td>3.99e-01</td>
</tr>
<tr>
<td>1000</td>
<td>1.47e-03</td>
<td>2.60e-01</td>
</tr>
<tr>
<td>10000</td>
<td>1.78e-03</td>
<td>7.48e-02</td>
</tr>
<tr>
<td>100000</td>
<td>2.31e-03</td>
<td>2.08e-02</td>
</tr>
</tbody>
</table>

表4 低頻度領域集中抽出法のみによる信頼性評価
<table>
<thead>
<tr>
<th>試行回数</th>
<th>確定強度の場合</th>
<th>不確定強度の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.30e-03</td>
<td>2.78e+00</td>
</tr>
<tr>
<td>10000</td>
<td>1.75e-03</td>
<td>7.56e-01</td>
</tr>
<tr>
<td>100000</td>
<td>2.12e-03</td>
<td>2.17e-01</td>
</tr>
</tbody>
</table>

表5 試行回数の結果への影響
<table>
<thead>
<tr>
<th>試行回数</th>
<th>P_t</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.0250</td>
<td>0.44296</td>
</tr>
<tr>
<td>400</td>
<td>0.0250</td>
<td>0.312641</td>
</tr>
<tr>
<td>600</td>
<td>0.0233</td>
<td>0.264345</td>
</tr>
<tr>
<td>800</td>
<td>0.0275</td>
<td>0.213080</td>
</tr>
<tr>
<td>1000</td>
<td>0.0250</td>
<td>0.197583</td>
</tr>
</tbody>
</table>

表6 周波数分割数の影響
<table>
<thead>
<tr>
<th>分割数</th>
<th>P_t</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.0250</td>
<td>0.44296</td>
</tr>
<tr>
<td>400</td>
<td>0.0250</td>
<td>0.312641</td>
</tr>
<tr>
<td>600</td>
<td>0.0250</td>
<td>0.264345</td>
</tr>
<tr>
<td>800</td>
<td>0.0250</td>
<td>0.213080</td>
</tr>
<tr>
<td>1000</td>
<td>0.0250</td>
<td>0.197583</td>
</tr>
</tbody>
</table>

表7 時間分割数の結果への影響
<table>
<thead>
<tr>
<th>分割数</th>
<th>P_t</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.0100</td>
<td>0.705328</td>
</tr>
<tr>
<td>90</td>
<td>0.0150</td>
<td>0.574442</td>
</tr>
<tr>
<td>100</td>
<td>0.0250</td>
<td>0.44296</td>
</tr>
<tr>
<td>200</td>
<td>0.0250</td>
<td>0.44296</td>
</tr>
<tr>
<td>300</td>
<td>0.0250</td>
<td>0.44296</td>
</tr>
</tbody>
</table>

表8 効率化法によるP_tの算定と、その周波数分割数による影響（MT乱数：メルセンヌ・ツイスター）

<table>
<thead>
<tr>
<th>周波数数の分割数</th>
<th>P_t</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.0235</td>
<td>0.273148</td>
</tr>
<tr>
<td>600</td>
<td>0.0225</td>
<td>0.329975</td>
</tr>
<tr>
<td>800</td>
<td>0.0350</td>
<td>0.262871</td>
</tr>
<tr>
<td>1000</td>
<td>0.0200</td>
<td>0.350438</td>
</tr>
<tr>
<td>1500</td>
<td>0.0450</td>
<td>0.230626</td>
</tr>
</tbody>
</table>

4. 構造物の動的信頼性評価 HMMC法は、非線形、劣化等の如何に関係無く初通過確率P_t=1-Rの算定にも有効である。Rは時刻tと共に変動する着目応答量X(t)の連続時間T中に常に閾値を超えない確率である。表1は(1)の確率特性を持つ標準関数をN個発生させた初通過回数nを観測すればP_t=1/n/Nで評価できる。5. 機械信頼性評価の例 金井-多治見の地震動加速度速度モデルを受ける線上自由度系を考え、変位応答スペクトル値U_s=4.0cm時のP_tの計算を、式9・29a、S_s=37.801cm^2/s^2（基盤での地震動外乱を白色雑音でモデル化した時のそのスペクトル密度）、ω_s=32.0rad/s（地盤の固有円振動数）、ζ_s=0.05（系の減衰定数）、ω_n=12.566rad/s（系の固有円振動数）の条件で行う。スペクトル密度S_s(ω)の金井-多治見モデルが適用する系のスペクトル密度S(ω)=|H(iω)|^2S_s(ω)(Hは伝達関数)を用い、10c/sまでの周波数分割数400、試行回数200、時間分割数200を基本条件として応答標本関数を発生させた。結果を表5〜8に示す。Vanmarcke評価式3)ではP_t=0.35810となった。表8より効率化の結果が確認できる。参考文献 1)松栄,第57回年講,1-047,2002. 2)橋本蒙,工学,共立,2000. 3)星谷・星谷,機械,鹿島出版会,1974.