開断面箱桁複合ラーメン橋の隅角部の力学特性に関する基礎的研究

長崎大学大学院	学生会員	森 圭司	長崎大学工学部	正会員	中村 聖三
長崎大学工学部	フェロー	高橋和雄	長崎大学工学部	正会員	呉 慶 雄
川鉄橋梁鉄構(株)	正会員	上村明弘	川鉄橋梁鉄構(株)	正会員	神田恭太郎

1.まえがき

複合ラーメン橋は耐震性に優れ,高価な支承部や伸縮装置がないため経済的であり,維持管理が簡単であ るなどの利点から,近年採用実績が増加している構造形式¹⁾である。そこで本研究では,ウェブが傾斜した 鋼箱桁を上部構造とし,埋め込み桁方式を採用している複合ラーメン箱桁橋の隅角部を対象とし,立体 FEM 解析により上下部構造間の力の伝達機構について検討する。その際,比較のため垂直ウェブの場合について も解析するとともに,スタッド剛性の影響についても検討する。

2.対象とする構造

本研究で対象とする構造は,実在する橋梁を参 考に設定した図-1に示す2径間連続複合ラーメ ン橋であり,鋼桁と橋脚の剛結部付近を解析対象 とする。実橋では,鋼桁の大部分は橋脚に埋め込 まれ,下フランジ,ウェブ,および支点上ダイア フラムに溶接されたスタッドジベルにより,鋼桁 と橋脚との一体化が図られている。また橋脚,鋼 桁,ダイアフラムに囲まれた部分には高強度コン クリート(桁内コンクリート)が充填されており, 床版には鋼・コンクリート合成床版が用いられて いる。

3.解析モデル

今回対象とした解析モデルは,2 種類の断面形 状と3種類のスタッド剛性を組合せた6種類であ る.スタッドの形状を表-1,解析モデルの種類を

表 - 2 に示す。垂直 web モデルのウェブ間隔については,図 - 2 に示すように斜め web モデルのウェブ高さ方向の中央点 におけるウェブ間隔とし,両モデルで床版幅を合わせ 7400mm とした。鋼板の厚さは 8mm とし,合成床版について はヤング係数比を用いて等価な鋼板(厚さ 37.86mm)に置き 換え,シェル要素としてモデル化した。コンクリート橋脚と 鋼桁の節点は分離し,スタッドを用いて両者を一体化させた。 表 - 3 に使用材料とそのモデル化を示す。境界条件は橋脚基 部を完全固定とし,荷重条件については,梁の両端に対する 正負の鉛直荷重(面内曲げモーメント)および桁端部ウェブ 図心高さに対する橋軸方向水平荷重とした。解析には汎用 FEM 解析ソフトウェア MARC を用いた。

表‐1 スタッドの形ね

	スタッド1	スタッド2	スタッド3
軸 径(mm)	18.5	22.0	26.2
断面積(mm ²)	268.795	380.122	537.550
新面2次モーメント(mm ⁴)	5749.338	11498.675	22997.350

表 - 2 解析に用いたモデル					
	スタッド1	スタッド2	スタッド3		
斜めweb	model-1-1	model-1-2	model-1-3		
垂直web	model-2-1	model-2-2	model-2-3		

表-3 使用材料とそのモデル化

使用材料	使用要素	ヤング係数 (N/mm ²)	
橋脚コンクリート	8節点ソリッド	24500	
桁内コンクリート	8節点ソリッド	27400	
鋼板	4節点厚肉シェル	200000	
スタッド	2節点はり要素	200000	

キーワード: 複合ラーメン橋, スタッドジベル, 剛結構造 連絡先: 〒852-8521 長崎市文教町 1-14 長崎大学工学部社会開発工学科(TEL&FAX)095-819-2613

I-523

4.解析結果と考察

4-1 水平荷重載荷時

解析結果の一例として,図-3 に示す各 スタッドについて, 代表的なモデルにおけ る橋軸方向せん断力を図-4 に示す。フラ ンジ設置スタッドのせん断力の分布は列の 中央付近で高く,端で低くなっている。ま た,スタッドの剛性が低い場合には全スタ ッドがほぼ一様にせん断力を分担している のに対し 剛性が高くなるとa~dの各列に おいて分担する水平せん断力の差が大きく なるとともに,同一列内でのばらつきも大 きくなっている。一方,ウェブ設置スタッ ドのせん断力は 高さ方向に変化しており, e~h のすべての列で分布形状はほぼ一致 している。これらの傾向は, すべてのモデ ルで共通であった。なお,フランジ設置ス タッドの水平荷重分担率は、斜めウェブモ デルで 8~9%, 垂直ウェブモデルで 11~15% であった。

4-2 鉛直荷重載荷時

表 - 4 に各列分担力の平均値の比を示した。ここで P_{W1}, P_{W2}はウェブの各列スタッドに作用する力の鉛直成分, P_{F1}, P_{F2}はフランジの各列スタッドの軸力である。また

る(図-5参照)。この結果 から今回検討した範囲では, スタッドに作用する力の鉛直 成分はおおよそスタッド位置 に依存すると考えることがで き,次式が成立することがわ かる。

dwi はスタッド列の間隔であ

 $P_{W1}: P_{W2} = dW1: dW2$ $P_{F1}: P_{F2} = dW1: dW2$

表 - 4 各モデルの dw1/dw2, P _{W1} /P _{W2} , P _{F1} /P _{F2}					
model-1-1		model-1-2		model-1-3	
dw1/dw2	0.333	dw1/dw2	0.333	dw1/dw2	0.333
P_{W1}/P_{W2}	0.319	P_{W1}/P_{W2}	0.316	P_{W1}/P_{W2}	0.309
P_{F1}/P_{F2}	0.335	P_{F1}/P_{F2}	0.343	P_{F1}/P_{F2}	0.349
model-2-1		model-2-2		model-2-3	
dw1/dw2	0.333	dw1/dw2	0.333	dw1/dw2	0.333
P_{W1}/P_{W2}	0.319	P_{W1}/P_{W2}	0.309	P_{W1}/P_{W2}	0.296
P_{F1}/P_{F2}	0.329	P_{F1}/P_{F2}	0.337	P_{F1}/P_{F2}	0.342

上式において,スタッド列の間隔は既知であるため,フランジとウェブに作用する力の鉛直成分の値をそれ ぞれ一つずつ知ることができれば,他の列のスタッドに作用する力を知ることが可能である。

5.まとめ

今後の課題としては,コンクリート橋脚と鋼桁の接触の問題,鉄筋の配置などを考慮した,より実構造に 近い解析を行うこと,本研究では考慮しなかった面外曲げモーメントやねじりモーメントに対する荷重伝達 機構を明らかにすることなどが挙げられる。

参考文献 1) 岩立次郎, 忽那幸浩: 剛結構造,橋梁と基礎, Vol.8, pp40~44, 2002.8