第 部門 二重鋼管・コンクリート合成柱の中心圧縮実験

神 戸 高 専 専攻科 学生員 早 見 真 神戸市立高専 正会員 上中宏二郎 大阪市立大学大学院 正会員 鬼頭 宏明 大阪工業大学 フェロー 園田恵一郎

1.はじめに

二重鋼管コンクリート合成柱¹⁾(以下、DCFT とする)は、2つの径の異なる鋼管を同心円上に配置し、 その間にコンクリートを充填することで、従来のコン クリート充填鋼管柱²⁾(以下、CFT とする)と比較し て、軽量となる利点を有する。

本研究では、DCFT 特有のパラメータである内径・ 外形比(*Di/Do*)が、中心圧縮特性に与える影響につい て実験的に検討することを目的としている。

2.実験方法

供試体一覧を表-1、載荷方法を図-1 にそれぞれ示す。 変位の測定は、軸方向変形のみについて計3箇所で行った。また、鋼管ひずみの測定は、二軸ひずみゲージ を内・外鋼管に計12箇所貼付して行った。さらに、 載荷中には鋼管の膨らみ及び座屈などを目視観察した。

2.実験結果及び考察

表-1に実験結果一覧を示す。ここで*Nuと*は、日本 建築学会で提案された中心圧縮強度の算定強度式 ²⁾(以下、累加強度式とする)を内鋼管の影響を考慮し、 修正した値であり、(1)式のように表される。

 $N_{u} = A_{c} f_{c} + (1+\eta) A_{so} f_{y} + A_{si} f_{y}$ (1)

ここに、*A*_c: コンクリート断面積 *f*_c: コンクリート 強度、*A*_{so}: 外鋼管の断面積、*f*_y: 鋼管の降伏強度、*A*_{si}: 内鋼管の断面積、η: 鋼管の耐力上昇係数(0.27)をそ れぞれ示す。

(1)破壊形式

典型例として t10-750 の外鋼管の破壊状況と、 t23-1125 の内鋼管内の破壊状況をそれぞれ写真-1(a)、 (b)に示す。これらより、得られた破壊形式は、コンク リートがせん断破壊を起こしたことで、鋼管中腹部が 局部座屈を起こして破壊に至っていることがわかる。 また、内鋼管内部でも、コンクリートのせん断破壊に 沿って鋼管が破壊面に沿って座屈していることが確認 できる。

図-1 載荷方法

(2) 変形特性

図-2 に鋼管厚 2.3mm シリーズの供試体の変形特性を 示す。同図より、DCFT の初期剛性は、変形の 0.5% まで CFT のそれとほぼ同等のものが得られた。また、 最大耐力後の強度は徐々に低下し、変形の 3.5%まで約 70%保持していることがわかる。

(3)中心圧縮強度

図-3 に本実験で得られた中心圧縮強度(*Nexp*)と式 (1)の算定値を比較したものを示す。同図より、本実

キーワード:合成構造、二重鋼管、内径・外径比 連絡先:〒651-2194 兵庫県神戸市西区学園東町 8-3 Phone & Fax:078-795-3540

#	Tad	D_{o}	t	D_i	ת, ת	D /t	E_s	f_y	E_{c}	f_c	N_u	N_{exp}	N / N
77	Tag	(mm)	(mm)	(mm)	D_i/D_0	D_0/l	(Gpa)	(Mpa)	(Gpa)	(Mpa)	(kN)	(kN)	1 v exp /1 v u
1	10-000	158.7	0.90	0.0	0.00	176.3	218	221	23.7	19.0	525	656	1.25
2	10-375	158.4	0.90	38.4	0.24	176.0	218	221	23.7	19.0	480	635	1.32
3	10-750	159.0	0.90	75.9	0.48	176.7	218	221	23.7	19.0	475	540	1.14
4	10-1125	159.1	0.90	113.7	0.71	176.8	218	221	23.7	19.0	436	378	0.87
5	16-000	157.5	1.50	0.0	0.00	105.0	232	308	23.7	19.0	647	815	1.26
6	16-375	158.1	1.50	39.4	0.25	105.4	232	308	23.7	19.0	664	852	1.28
7	16-750	158.2	1.50	76.9	0.49	105.5	232	308	23.7	19.0	709	728	1.03
8	16-1125	158.3	1.50	114.3	0.72	105.5	232	308	23.7	19.0	600	589	0.98
9	23-000	157.7	2.14	0.0	0.00	73.7	222	286	23.7	19.0	774	908	1.17
10	23-375	157.6	2.14	39.7	0.25	73.6	222	286	23.7	19.0	789	968	1.23
11	23-750	157.6	2.14	77.3	0.49	73.6	222	286	23.7	19.0	846	879	1.04
12	23-1125	157.4	2.14	114.8	0.73	73.6	222	286	23.7	19.0	791	704	0.89

表-1 供試体及び実験結果一覧

験で得られた DCFT の中心圧縮強度は、相対比 N_{exp} / N_u =1.11、相関係数 r=0.85 という結果から、概ね CFT と同様に評価できることが解る。すなわち、DCFT は中空断面にも関わらず、CFT 同様にコンクリートへの 拘束効果を与えていたと考えられる。

(4)応力状態

典型例として t16-750 の外、内鋼管の応力状態(z、

)を図-4 に示す。また、これらは平面応力状態の Prandtl-Reuss の構成則に基づいており、 は周方 向、 zは軸方向応力をそれぞれ示す。

図-4 から、 z が降伏応力(f_y)に到達後、外鋼管の は引張方向に、内鋼管の は圧縮方向に発生して いることがわかる。これは、充填コンクリート内にひ び割れが発生したことにより、コンクリートが体積膨 張を起こしたためと思われる。

4.まとめ

(1)得られた破壊形式は、コンクリートがせん断破壊することによって,鋼管に局部座屈をもたらした。

(2)DCFT の初期剛性はCFTと同等のものが得られた。
最大耐力後の強度は変形の3.5%まで約70%保持した。
(3)DCFT の中心圧縮強度は、CFT で用いられる累加
強度式により、概ねCFTと同様に評価できた。

(4) 素が降伏応力に到達後の周方向応力()は、充填コンクリートが体積膨張を起こしたことにより、外鋼管は引張方向に、内鋼管は圧縮方向に発生した。

参考文献

1)Wei,S. et. al.: Performance of New Sandwich Tube under Axial Loading: Experiment, Journal of Structural Engineering, American Society of Civil Engineers, Vol.121, No.12, pp.1806-1814, December,

図-3 中心圧縮強度と累加強度値

図-4 鋼管の応力状態(t16-750)

1995

2)日本建築学会:鉄骨鉄筋コンクリート構造計算基準・ 同解説,2001