応用要素法(AEM)を用いた砂質地盤中における杭基礎の破壊挙動解析

東京大学大学院 正会員 菅野 有美 東京大学生産技術研究所 正会員 目黒 公郎

1.はじめに

兵庫県南部地震をはじめとする過去の大地震では、 数多くの構造物が崩壊し、それと共に多くの人命が犠 牲となった。近年、再び複数の大規模地震が日本列島 を襲うという危険性が叫ばれている。地震による被害 を軽減させるためには、想定以上の地震動が加わった 時に、構造物がどのような過程を経て破壊に至るのか を解明することが重要である。こうした立場から Meguro · Hatem によって開発された応用要素法 (Applied Element Method: AEM)¹⁾は、微小変形から大変 形・崩壊までを追跡できる新しい解析手法である。

地震災害の中には、地盤の変形や液状化が原因と考 えられる地中構造物の被害も多く見受けられる。しか しながら、AEM を用いた既往の研究では、地盤と構造 物の相互作用を考慮した研究が十分ではなかった。

そこで本研究では、AEM を用いて地盤を含めた杭基 礎の数値解析を試みる。そして、実験結果との比較を 行うことで、AEMの適用性を検討する。

2.応用要素法(AEM)の特徴

AEM では、解析対象を仮想的に分割した矩形要素の 集合体として扱う。各要素は、法線方向とせん断方向 の2種類の分布バネでつながれており、これらのバネ を介して力のやり取りを行う(図1)。コンクリート と鉄筋の材料モデルには、図2と図3に示すモデルが それぞれ用いられている。クラックの発生は個々のバ ネが破壊することで表現されるため、クラックの発生 位置や方向をあらかじめ仮定することなく進行性破壊 現象が追跡できる。このようなメカニズムによって AEM では、比較的短い計算時間で微小変形から大変形 挙動までを統一的に解析できる。また、RC のような 複合材を扱う場合、鉄筋位置に鉄筋の材料特性を有す るバネを追加することで、1本1本の鉄筋の位置と量 をダイレクトに反映した解析が可能となる。

図1 AEMのバネ分布と幾何学的関係

図3 鉄筋の材料モデル

3.解析対象

本研究では、地盤中における鉄筋コンクリート杭の 水平交番載荷実験²⁾を対象とした。図4に実験の載荷 システム概要図を示す。強制変位振幅は 5mm ピッチ で変化させ、各サイクルは1回ずつである。乾燥砂を 自由落下させて作成された緩詰めと締固めを行った密 詰めの2種類の模擬地盤において行われた。

載荷システム概要図 図 4

4.砂地盤のモデル化

地盤 構造物間には、図5で示すように滑りと剥離 を考慮したモデルを導入した。法線バネに関しては引 張域では力のやり取りをしないものとし、応力を0と

キーワード:応用要素法、砂地盤、杭基礎、数値解析 連絡先 〒153-8505 東京都目黒区駒場4-6-1 東京大学生産技術研究所 目黒研究室 TEL:03-5452-6437

した。接線バネに関しては次式(1)のモールクーロン 式から算出される降伏応力 t_f を持つものとし、降伏後 は応力一定とした。

$$\boldsymbol{t}_{f} = c + \boldsymbol{s} \tan \boldsymbol{f} \tag{1}$$

地盤 地盤間においても地盤 構造物間と同様の モデルを用いたが、地盤の変形特性を考慮しせん断剛 性のひずみ依存性を表現する必要性がある。そこで、 図6で示される大崎 model³⁾を導入した。緩詰めの場合 と密詰めの場合の初期せん断剛性 G0 を間隙比 e と鉛 直有効応力 'から求める次式(2)⁴⁾を用いた。

$$G_0 = 630 \frac{(2.17 - e)^2}{1 + e} \mathbf{s}^{0.321}$$
(2)

図6 砂地盤のせん断応力 せん断ひずみ関係

5.解析結果と考察

図7に砂地盤が緩詰めの場合と密詰めの場合につ いてそれぞれの実験後のひび割れ状況を示す。図中の 矢印は、損傷の最もひどかった位置を指している。緩 詰め地盤中に置かれた杭のほうが、最大損傷位置が深 く位置し、ひび割れ発生場所も広く分布している。

図8にAEMを用いた解析結果を示す。a)は杭頭の 最大変位が5mm時のb)は10mm時のひび割れ図であ る。緩詰め地盤の方が深い位置からひび割れが生じ始 めており、変位増加後も幅広くひび割れが発生してい る。これに対し密詰め地盤では、杭の中心辺りからひ び割れが発生し始め、変位増加後もそのひび割れの進

行が見られる。上記のことより、緩詰め地盤では幅広 くひび割れが発生し、密詰め地盤では比較的浅い位置 に局所的にひび割れが発生するという実験結果と一致 している。

6.まとめと今後の課題

本研究では、砂のモデルを導入した AEM を用いて 地盤も含めた RC 杭の解析を行った。実験で見られた 傾向と同様、地盤の締固め度により杭のひび割れ分布 や最大損傷位置に影響が出ることが確認された。今後 は、より詳細な検討を進める予定である。

参考文献

- Meguro.K, Tagel-Din Hatem: Applied Element Method for Structural Analysis Theory and Application for Linear Materials, Journal of Structural Mechanics and Earthquake Engineering, JSCE, 4.2000, Vol647, pp31-45
- 2) 牧 剛史, 睦好 宏史: 鉄筋コンクリート杭の水平 復元力特性と変形性状に関する研究, 土木学会論 文集, No.683/V-52, pp103-118, 2001.8
- Ohsaki.Y , Some Notes on Masing's Law and Non-Linear Response of Soil Deposits, Journal of the Faculty of Engineering, The University of Tokyo(B), Vol.35, No.4, pp513-536, 1980
- 石田 毅,渡辺 啓行,伊藤 洋,北原 義浩,松本 正 毅:低拘束圧下の模型実験材料(岐阜砂等)の静 的・動的特性,電力中央研究所報告,No.380045, 1981.5