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1. Introduction 
     The propagation of elastic waves along the interfaces in a 
layered half-space and a layer between solids is considered.  
These media consists of monoclinic material with the symmetry 
plane at 3 0x =  and 2 0,x =  all interfaces are rigidly bonded. 
The dispersion equation relating the wave speed to the wave 
number is obtained.  Numerical examples are presented to 
illustrate the dispersion curves, and displacement and stress 
curves.   
 
2. Waves in the monoclinic materials with the symmetry 

plane at 3 = 0x  
     When a monoclinic material with the symmetry plane at 

3 0x =  is subjected to a two-dimensional deformation, the in-
plane displacements and the anti-plane displacement are 
uncoupled.  So, for deformations where 

1 2 ,( , ),i i tu u x x= 1, 2, 3,i = the equations of motion are  
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A plane wave propagating in the x1 direction is given by 
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for in-plane problem, and 
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for anti-plane problem, where = -1i , /c kω=  is the phase 
velocity, ω  is the circular frequency, k is the wave number Ai, is 
the displacement amplitudes, and b is the decay factor that is 
obtained from the equations of motion.   
 
3. Layered half-space problem 
     Consider a monoclinic layer of thickness h perfectly bonded 
to a different monoclinic half-space (Fig. 1).   
 

 
Fig. 1. Geometry of a monoclinic layered half-space. 

 
 
 

     Displacements and stresses in a layer are obtained from eqn 
(2.4) and Hooke’s law, and are given as 
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for in-plane problem, and 
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for anti-plane problem, where 
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     For decaying waves in the half-space Re(b)<0.  Then 
displacements and stresses in half-space are  
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for in-plane problem, and 
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for anti-plane problem. 
 

    At the interface, each material is rigidly bonded, and the 
displacements and stresses are continuous.  While the 
surface 2x h= is traction-free.  From these boundary conditions, 
the dispersion relations are given as 
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for in-plane problem, and
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for anti-plane problem, where 2
44/c Cξ ρ= is the non-

dimensional phase speed 
 
4. Layer between solids problem 
     Consider a monoclinic layer of thickness 2h sandwiched 
between two different types of monoclinic solids.  Both 
interfaces are rigidly bonded (Fig.2). 
 

 
Fig. 2. Geometry of a monoclinic layer between monoclinic 

solids. 
 

     For the in-plane problem, displacements and stresses in the 
layer are same as for the layered half-space problem.  Now, for 
convenience rewrite the formal solution (3.1) in the compact 
form as 
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     In this problem, the propagator matrix approach is used.  This 
matrix relates the upper face of layer to the lower face of layer.  
Specializing eqn (4.1) to the upper and lower face of layer, leads 
respectively to 
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From eqn (4.2), the relationship  
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From the boundary conditions at the interface  
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From eqns (4.3) and (4.5) the dispersion relation for in-plane 
problem is given as 
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     The anti-plane problem is solved using the same method used 
for the layered half-space.  The dispersion relation is obtained as 

 
(2) (2) (1)

1 2 1
(2) (2) (2) (2) (1) (1)

31 1 32 2 31 1
(2) (2) (3)

1 2 2
(2) (2) (2) (2) (3) (3)

31 1 32 2 32 2

0
0

0.
0
0

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

E h E h E h
D E h D E h D E h
E h E h E h

D E h D E h D E h

−
−

=
− − − −

− − − −

   

(4.8) 
 

5. Numerical results 
     Material parameter given in Table 1 are used to illustrate the 
dispersion curves, and displacement and stress curves. 

 
Table. 1. Values of the elastic constants and density. 

Cij  (103Mpa), ρ(kg m-3) 
 
Dispersion curves are illustrated from the eqns (3.8) and (4.8) as 
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Fig. 3. Dispersion curves for (a) layered-half space and (b) 

layer between solids. 
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Fig. 4. (a) Displacement and (b) stress amplitudes for 

layered half-space. (kh=20) 
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Fig. 5. (a) Displacement and (b) stress amplitudes for layer 

between solids. (kh=20)  
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Material C11 C22 C12 C16 C26 C66 C44 C55 C45 ρ  

aegirite-
augite 

216 156 66 19 25 46.5 49.2 40.0 4 3420 

augite 218 182 72 25 20 51.1 55.8 69.7 4 3320 
diallage  211 154 37 12 15 62.2 52.3 63.9 -9 3300 
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