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WAVE PROPAGATION IN AN ANISOTROPIC ELASTIC LAYERED HALF-SPACE

o Kanako Usui
Anil C. Wijeyewickrema

1. Introduction

The geometric model dealt with in this research is a
transversely isotropic layer bonded to an orthotropic half-
space. Elastic wave propagation in anisotropic layered
media is useful for earthquake engineering and non-
destructive evaluation studies. Recently, Sotiropoulos
(1999) obtained the dispersion equation for an orthotropic
layer on an orthotropic half-space.

Fig. 1. The anisotropic elastic layered half-space.

2. Basic equations
The equations of motion in an orthotropic half-space
(x,20) and a transversely isotropic layer (-h<x, <0)

that has x, -axis as an axis of symmetry are written as

x,20: Cplyy +CuU, 5 +Cy (uLzz +Uz,1z) = pu,
Ces (U1,21 + um) +CuUyp, +CoU, 5, = pl,, (2-1)
Coglgyy + Cply 5, = o,

-h<x,<0: Cub, +Cul,, +€, (ﬁm +Eum) 2o,

Cit (s + ) + s +C510 0, (22)
Csmsug,n + ("GMa&ZZ =p 113,
where C; and C are the elastic constants of orthotropic
media and transversely isotropic media respectively.
When u =u (x, x,t),(i=1273), only six and five
independent elastic constants are required for orthotropic
and transversely isotropic media respectively.
From egns (2.1) and (2.2), it can be seen that the

layered half-space problem can be decoupled into the in-
plane problem (u, #0,a =1,2,u, =0), and the anti-plane

problem (u, 20,u, =0,a =1,2).

3. In-plane problem of atransversely isotropic layer
on an orthotropic half-space

3.1. Displacements

The displacements in the orthotropic half-space and in
the transversely isotropic layer are respectively,
X 20: u, =U, exp[ —okx, +ik(x —ct)],
-h<x,<0: u=U} exp{—&kx2 +ik(% —ct)}
where U, U] are arbitrary constants and q,q” are the

decay factors and k,c are the wave number and the phase

velocity. Substituting egn (3.1.1) into the equations of

motion, the equation of g in each material is obtained.

The equation for the orthotropic half-spaceis
Fa'+F0° +F =0,

(3.1.1)

(3.1.2)
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where
F = CuCe:
F, = =CyCp —Ce” +0C*(Cyy +Cy) +(Cyp +Ceq )’
k= (pcz —Cn)(pcz _Cee)v
and for the transversely isotropic layer is
Fg'+Fq°+E =0, (3.1.3)
where
F"=C,Cl,
Fl=-ClC, -G, +p (?322 RZM) +(3C12 -?-CM)Z,
F=(dc¢-C,) (B -€,,).
From egns (3.1.2) and (3.1.3), each equation has four
solutions, however, it is necessary that the real part of the
decay factor of the half-space is positive. Therefore,
assuming that

¢ = -0 0, = 0, Re(q,), Re(q,) >0,
G =G, 0, = 0, Re(G,), Re(q,) >0,

the displacementsin each material are written as
u, :{ZZIU[(,”)e‘qﬁka}exp[ik(x1 —-ct)],
=1
4 N
-h<x,<0: U :{Zu,g,y)ce_’wz}exp[ik(x1 —at)],
y=1

where

X, 20:

(3.1.4)

— 2 2
U ful = 2 B TOE
'qp (C12 +C66)
-C, +qi2(5,4 +pc?
iq, (Cp, +Cu)

(3.1.5)

upe g -

3.2. Dispersion equation

Since the transversely isotropic layer and the
orthotropic  half-space are rigidly bonded, the
displacements and the stresses of both materials at the
interface (x, =0) should be continuous, therefore, the

boundary conditions at the interface are

U = U Uy SUp, 0y =03, 01 =0, (% =0).  (32.1)
The boundary conditions at the free surface are
03 =01, =0, (x,=-h). (322

The dispersion equation is obtained from the determinant
of the 6x6 matrix representing the six boundary

conditions. Using Laplace expansion, the dispersion
equation issimplified as
Asjnh[kh(of+d§)]_ sinh[ kn(q -6,)
(o +ifz) (& _azﬁl (32.3)
sinh?| kh(qf +d; sinh? | Zkh(q, -6,
+C {2 ( 5 )}—D 2 ( 5 )}+E=O
(ouu+q§) ((i _az)

4. Anti-plane problem of a transversely isotropic layer
on an orthotropic half-space
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4.1. Displacements
Adopting the same procedure used for the in-plane
problem, from egns (2.1) and (2.2), the displacements are

XZZO: u3:U39_qu2 e(p[|k(xl—Ct)], (a)
2 :

“h<x, <0 u3u:{Zugl)meq?«z}e(p[ik(xl—ct)}, (b)
j=1

where

q= {Css _pCZJ%’ ql] - _qg :(Csms _ijZJ% .
Cu Ci
Equation (4.1.1a) is also written as
U, = U, ke M= Imiaye +x ~c}

(4.1.1)

Re(g) and Im(q) are the rea part and the imaginary part
of q respectively. The displacement decays with the
distance from the interface x, , therefore, g must have the

real part, i.e.,
Cy > pc’. (4.1.2)
4.2. Dispersion equation
The boundary conditions are
0 —
U = U5, Oy =0, X, =0),
g Exz =% @21

For plotting the dispersion curves, it is necessary to
normalize the phase velocity. The dispersion equation is
written as

(e ]

where ¢ = pc?/Cy, ({ <1).

5. Numerical results
Table 1. Material properties.

C“{(l_z)gj}% o (422

FA
o pEb55 _ %
°““{pc$5Z 1]@4}

Material p(g/er®) | C, | Cu
Graphite-epoxy 1.7 7.07 35
Beta-quartz 2.65 36.1 | 49.95
Layer Carbon-epoxy 158 | 62 | 36
Austenite 8.1 1284 | 82.4
Half- Graphite-epoxy 1.6 352 | 12.08
space | Composition (Mg,,,Fe,,)0.Si0, 3.324 667 810

C,:elastic constants(><103 MPa)
Table 2. Combinations of materials.

Layer Half-space
Casel Graphite-epoxy Graphite-epoxy
Case?2 Carbon-epoxy Graphite-epoxy
Case3 Beta-quartz Composition
Case4 Austenite Composition

5.1. Dispersion curves
For the anti-plane problem, the dispersion curves of
the first 5 modes are shown in Figs. 2-3.

10 (a) Case 1 10 (b) Case 2
08 08
06 06
¢ oa ¢ 04
02 02
00 00
0 10 20 30 40 50 0 10 20 30 40 50
kh kh

Fig. 2. Dispersion curvesfor (a) Case 1 and (b) Case 2.
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Fig. 3. Dispersion curvesfor (a) Case 3 and (b) Case 4.

5.2. Displacement and stress distribution

For the anti-plane problem, the figures of the
displacements and the stresses in terms of the distance
from the interface x, are shown in Fig. 4. The following

figures are for three modes of Case 1 (Table 1) at kh = 20.
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Fig. 4. (a) Displacements and (b) stresses for mode 1 to 3.

6. Summary and Conclusions

For the in-plane problem, the simplification of the
dispersion equation is not enough because each term of
the explicit equation is still very large. For the anti-plane
problem, the dispersion equation is obtained explicitly for
drawing the dispersion curve. In addition, the figures of
the displacement and the stress are shown.
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