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1. Introduction 
     The geometric model dealt with in this research is a 
transversely isotropic layer bonded to an orthotropic half-
space.  Elastic wave propagation in anisotropic layered 
media is useful for earthquake engineering and non-
destructive evaluation studies.  Recently, Sotiropoulos 
(1999) obtained the dispersion equation for an orthotropic 
layer on an orthotropic half-space. 

 

 
 

Fig. 1. The anisotropic elastic layered half-space. 
 
2. Basic equations 
     The equations of motion in an orthotropic half-space 
( )2 0x ≥  and a transversely isotropic layer ( )2 0h x− ≤ ≤  
that has 2x -axis as an axis of symmetry are written as 
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where ijC  and ijC ∗  are the elastic constants of orthotropic 
media and transversely isotropic media respectively. 
     When ( ) ( )1 2, , , 1, 2, 3i iu u x x t i= = , only six and five 
independent elastic constants are required for orthotropic 
and transversely isotropic media respectively. 
     From eqns (2.1) and (2.2), it can be seen that the 
layered half-space problem can be decoupled into the in-
plane problem ( 30, 1,2, 0u uα α≠ = = ), and the anti-plane 
problem ( 3 0, 0, 1,2u uα α≠ = = ). 
 
3. In-plane problem of a transversely isotropic layer   

on an orthotropic half-space 
 
3.1. Displacements 
     The displacements in the orthotropic half-space and in 
the transversely isotropic layer are respectively, 
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where ,U Uα α
∗  are arbitrary constants and ,q q∗  are the 

decay factors and ,k c  are the wave number and the phase 
velocity.  Substituting eqn (3.1.1) into the equations of 
motion, the equation of q  in each material is obtained.   
The equation for the orthotropic half-space is  
 4 2
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and for the transversely isotropic layer is  
4 2
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From eqns (3.1.2) and (3.1.3), each equation has four 
solutions, however, it is necessary that the real part of the 
decay factor of the half-space is positive. Therefore, 
assuming that  
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the displacements in each material are written as 
( ) ( )

( ) ( )

2

2

2

2 1
1

4

2 1
1

0 : exp ,

0 : exp ,

q kx

q kx

x u U e ik x ct

h x u U e ik x ct

β

γ

β
α α

β

γ
α α

γ

∗

−

=

−∗∗

=

� �
≥ = −� �� � � �

	 

� �

− ≤ ≤ = −� �� � � �
	 


�

�

 (3.1.4) 

where  
( ) ( )

( )
( ) ( )

( )

2 2
11 66

2 1
12 66

2 2
11 44

2 1
12 44

,

.

C q C c
U U

iq C C

C q C c
U U

iq C C

ββ β

β

γγ γ

γ

ρ

ρ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗

− + +
=

+

− + +
=

+

  (3.1.5) 

 
3.2. Dispersion equation 
     Since the transversely isotropic layer and the 
orthotropic half-space are rigidly bonded, the 
displacements and the stresses of both materials at the 
interface ( )2 0x =  should be continuous, therefore, the 
boundary conditions at the interface are 
      1 1 2 2 22 22 12 12, , , ,u u u u σ σ σ σ∗ ∗ ∗ ∗= = = =    ( )2 0 .x =  (3.2.1) 
The boundary conditions at the free surface are 
      22 12 0,σ σ∗ ∗= =          ( )2 .x h= −  (3.2.2) 
The dispersion equation is obtained from the determinant 
of the 6 6× matrix representing the six boundary 
conditions.  Using Laplace expansion, the dispersion 
equation is simplified as   
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4. Anti-plane problem of a transversely isotropic layer 

on an orthotropic half-space 
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4.1. Displacements 
     Adopting the same procedure used for the in-plane 
problem, from eqns (2.1) and (2.2), the displacements are 
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Equation (4.1.1a) is also written as 
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Re( )q  and Im( )q  are the real part and the imaginary part 
of q  respectively.  The displacement decays with the 
distance from the interface 2x , therefore, q  must have the 
real part, i.e., 
 2
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4.2. Dispersion equation 
The boundary conditions are 
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For plotting the dispersion curves, it is necessary to 
normalize the phase velocity.  The dispersion equation is 
written as 
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where ( )2
55 , 1c Cζ ρ ζ= < .   

5. Numerical results 
Table 1. Material properties. 

 Material ( )3g cmρ  44C  55C  

Graphite-epoxy 1.7 7.07 3.5 
Beta-quartz 2.65 36.1 49.95 

Carbon-epoxy 1.58 6.2 3.6 Layer 

Austenite 8.1 128.4 82.4 
Graphite-epoxy 1.6 3.52 12.08 Half-

space Composition ( )91.7 8.3 2Mg Fe O.SiO  3.324 667 810 

( )3:elastic constants 10ijC MPa×  
Table 2. Combinations of materials. 

 Layer Half-space 
Case 1 Graphite-epoxy Graphite-epoxy 
Case 2 Carbon-epoxy Graphite-epoxy  
Case 3 Beta-quartz Composition 
Case 4 Austenite Composition 
 
5.1. Dispersion curves 
     For the anti-plane problem, the dispersion curves of 
the first 5 modes are shown in Figs. 2-3. 
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Fig. 2. Dispersion curves for (a) Case 1 and (b) Case 2. 
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Fig. 3. Dispersion curves for (a) Case 3 and (b) Case 4. 

 
5.2. Displacement and stress distribution 
     For the anti-plane problem, the figures of the 
displacements and the stresses in terms of the distance 
from the interface 2x  are shown in Fig. 4.  The following 
figures are for three modes of Case 1 (Table 1) at 20kh = .  

 
Fig. 4. (a) Displacements and (b) stresses for mode 1 to 3. 

 
6. Summary and Conclusions 
     For the in-plane problem, the simplification of the 
dispersion equation is not enough because each term of 
the explicit equation is still very large.  For the anti-plane 
problem, the dispersion equation is obtained explicitly for 
drawing the dispersion curve.  In addition, the figures of 
the displacement and the stress are shown. 
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