Spline 要素法を用いた剛体モードを含む平板の振動解析

大同工業大学 正員 水澤富作 正員 田仲八重 大同工業大学大学院 学生員 名木野晴暢

1. **はじめに** 4辺自由な長方形板や1辺が単純支持され,他の3辺が自由な平板の振動解析は,剛体モードを含むので,解析上困難な問題の1つである.自由平板は,振動法による材料の動弾性係数の計測などに用いられている.これまでにも,クラドニーによる振動の可視化実験以来,多くの研究成果が発表されている.しかしながら,剛体モードを含む平板の振動問題では,厳密解を求めることが困難になるので,長方形薄板を対象にRitz 法や有限要素法などの数値解析法が適用されている¹⁾. 最近,Gorman 6²は,重ね合わせ法を用いて,周辺自由な等方性 Mindlin 長方形の振動解析を行っている.しかしながら,剛体モードを含む変厚板や直交異方性板の研究は,少ないように思われる.

本文では spline 要素法を適用して、剛体モードを含む変厚 Mindlin 板の振動解析を行い,本手法の収束性や解析精度について検討してい る.また,剛体モードを含む平板の振動モード特性についても検討を 行っている.

2. <u>**式の定式化</u>** ここでは ,spline 要素法と Mindlin 板理論を用い て ,式の定式化をしている ³⁾. Mindlin 板理論で定義される独立した 3つの変位関数W' = W/b, θ_x , θ_y は ,正規化した B-spline 関数を用い</u>

図-1 変厚板と座標系

て仮定する.図-1 に示すように,一方向に変厚な直交異方性 Mindlin 板のひずみエネルギ-U と運動エネ ルギーTは,無次元座標系($\xi = x/a, \eta = y/b$)を用いて次式で与えられる.

$$U = (abD_{x}^{o}/2a^{2})\int_{0}^{1} \int_{0}^{1} [H(\xi)^{3} (\partial\theta_{x}/\partial\xi)^{2} + (a/b)^{2} (E_{y}/E_{x})H(\xi)^{3} (\partial\theta_{y}/\partial\eta)^{2} + 2(a/b)_{yx}H(\xi)^{3} (\partial\theta_{x}/\partial\xi)(\partial\theta_{y}/\partial\eta) + 4(1 - v_{xy}v_{yx})(G_{xy}/E_{x})H(\xi)^{3} \{(\partial\theta_{y}/\partial\xi) + (a/b)(\partial\theta_{x}/\partial\eta)\}^{2} + 12(1 - v_{xy}v_{yx})\kappa(b/h_{o})^{2} (a/b)^{2} (G_{xz}/E_{x})H(\xi)\{(b/a)(\partial W'/\partial\xi) + \theta_{x}\}^{2} + 12(1 - v_{xy}v_{yx})\kappa(b/h_{o})^{2} (a/b)^{2} (G_{yz}/E_{x})H(\xi)\{(\partial W'/\partial\eta) + \theta_{y}\}^{2}]d\xi d\eta$$
(1)
$$T = (-h_{o}/2)^{-2}ab^{3}\int_{0}^{1}\int_{0}^{1} \{H(\xi)W'^{2} + (1/12)(h_{o}/b)^{2}H(\xi)^{3}(\theta_{x}^{2} + \theta_{y}^{2})\}d d$$
(2)

ここで, $H(\xi)$ は板の変厚関数, ρ は密度であり, ω は円振動数(rad/sec)である. 変厚板の全ポテンシャルエネルギー は,次式で表される. $\prod = U - T$ (3)

したがって,変位関数を式(3)に代入し, を極値化すれば,次式の固有方程式が得られる.

$$\partial \prod / \partial \{\Delta\}_{mn} = \sum_{m=1}^{i_x} \sum_{r=1}^{i_y} \sum_{s=1}^{i_x} \sum_{s=1}^{i_y} ([K]_{mnrs} \{\Delta\}_{mn} - n^{*2} [M]_{mnrs} \{\Delta\}_{mn}) = 0$$
⁽⁴⁾

ここで,n*は振動数パラメータであり, $\omega a^2 \sqrt{\rho h_o / D_o^x}$ で表している.ただし, h_o は基準板厚であり, $D_o^x = E_x h_o^3 / [12(1-v_{xy}v_{yx})]$ である.ダブルQR法を適用して,式(4)で与えられた固有方程式の固有値計算を行い,また逆反復法により固有値ベクトルを求めている.

3. <u>数値計算例および考察</u> 数値計算例に用いたせん断修正係数は,5/6 に仮定し,また剛体モード を含む長方形板は,周辺自由板(FF-FF)と1辺が単純支持,他の3辺が自由な板(SF-FF)である.

キーワード vibration, Mindlin plate, rigid body mode, spline element method, mode shape 〒457-8532 名古屋市南区白水町40 都市環境デザイン学科 電話 052-612-5571

-431-

表-1 には,3つの剛体モードを除いた周辺自由な正方形板の振動数パラメータ n*の収束性に与える要素

分割数の影響が示してある.ここで,幅厚比 b/h は 50 に仮定し,比較のために,Gorman らの重ね合わせ法による解析解²⁾も示してあ る.また,また表中に示した SYM は対称モ ード,ASYM は逆対称モードであり,S-A は,対称 逆対称モードを示している.これ より 本手法の値は 要素分割数を高めると, 一定値への安定した収束性が示され,また Gorman らの解とも良く一致した結果が得ら れている.

表 2 は,1つの剛体モードを除いた1辺が単 純支持,他の3辺が自由な長方形板(b/h=50, =0.3)の振 動数パラメータの精度比較を示している.比較のために, 薄板理論とRitz法を用いて求めたLeissaの解¹⁾も示して ある.これより,本手法による値は,Leissaの解より小さ めであるが,良く一致した結果が得られている.また,図 -2は,本手法を用いて求めた正方形板(SF-FF)の振動モ ード形状と振動数パラメータを示している.ただし、図で, 濃淡の境が節線(nodal line)になる.

表-3には,一方向に変厚を有する周辺自由な正方形厚板 の振動数パラメータ n*に与える変厚比 $\delta = h_1 / h_0$ と幅厚比 b / h_0 の影響が示してある.ここで, b / h_0 は,50,25,12.5に仮 定し, は1.0と2.0としている.これより,振動数パラメー 夕は,変厚比や幅厚比の影響を受ける.

表-3 変厚板の振動数パラメータに与える変厚比δの影響:

a/b=1.0

	-					
δ	b/ho	1st	2nd	3rd	4th	5th
1.0	50	13.07	19.20	24.39	34.00	34.01
	25	12.95	19.11	24.26	33.49	33.49
	12.5	12.62	18.80	23.78	32.18	32.18
2.0	50	19.66	29.13	36.22	49.74	50.52
	25	19.31	28.62	35.72	48.96	49.52
	12.5	18.61	27.77	34.46	45.69	46.82

4. <u>まとめ</u>本文で得られた結果を示すと,以下の通りである.
 (1) Spline 要素法を用いれば,剛体モードを含む平板の精度の高い振動解析が可能である.(2) FF-FFとSF-FF板には,それぞれ3つと1つの剛体モードが生じる.(3) 正方形の振動モード形状は,変厚などの影響を受ける.

参考文献 1) Leissa,A.W.:The free vibration of rectangular plates, J. Sound. Vib., Vol. 31, pp. 257-293,1973. 2) Gorman, D.J. and Ding, W.: Accurate free vibration analysis of the completely free rectangular Mindlin plate, J. Sound. Vib., Vol. 189, pp. 341-353,1996. 3) 近藤他;

Spline 要素法を用いた変断面性状を有する長方形木板の振動解析,応用力学論文集,Vol. 4, pp. 183-194, 2001.

表 1 正方形板の振動数パラメータの収束性と精度比較;b/h=50, v =0.333

	振動モート*	8 × 8	12 × 12	16×16	20 × 20	Gorman ²⁾
1st	ASYM	13.27	13.13	13.08	13.07	13.06
2nd	SYM	19.52	19.65	19.16	19.20	19.20
3rd	SYM	24.97	24.34	24.48	24.39	24.37
4th	S-A	34.55	34.04	33.95	34.00	33.91
5th	S-A	63.93	61.68	60.92	60.68	60.63
6th	SYM	66.29	62.53	62.25	62.23	61.91
7th	ASYSM	71.70	68.39	67.80	67.61	67.36
8th	ASYSM	82.81	77.57	76.74	76.50	76.25
9th	S-A	108.5	104.1	103.3	103.0	102.5
10th	SYM	140.3	120.1	116.7	115.9	115.4
*ASYM:逆対称, SYM:対称, S−A:対称−逆対称						

表-2 SF-FF の長方形版の振動数パラメータの精度比較:b/h=50, ν=0.3

a/b	Modes		SEM	Leissa
	1st	(1,2)	6.113	6.648
	2nd	(2,1)	14.73	15.02
1.0	3rd	(2,2)	25.32	25.49
	4th	(1,3)	26.10	26.13
	5th	(3,1)	48.05	48.71
	6th	(2,3)	50.22	50.85
	1st	(1,2)	9.798	9.850
	2nd	(2,1)	14.41	15.01
1.5	3rd	(2,2)	33.74	34.03
	4th	(3,1)	48.25	48.33
	5th	(1,3)	54.56	55.07
	6th	(3,2)	69.93	70.70

