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INTRODUCTION 

Constitutive equation for the large elastoplastic defor-
mation is formulated in this article by refining the large de-
formation theory of Naghdabadi and Saidi (2002) adopting 
the corotational logarithmic (Hencky) strain rate tensor and 
incorporating it into the subloading surface model of Hashi-
guchi (1980) falling within the framework of the unconven-
tional plasticity. 
 
CONSTITUTIVE EQUATIONS 

The deformation gradient F can be led to the polar de-
composition: 

=F VR ,                                (1) 
where  

T 1/2 T 1/2 1= ( ) ,   = {( ) }−V FF R FF F ,               (2) 
whilst V can be written in the principal directions as 

1

=1

3
= α α αα

λ∑ ⊗V n n ,                              (3) 

denoting the principal values and directions as  and α αλ n , 
respectively.  

Throughout this paper the corotational rate T with ob-
jectivity for an arbitrary second-order tensor T is given as  

•≡ − +T T ΛT TΛ ,                        (4) 
where ( )•  stands for the material-time derivative and Λ  is 
the proper  spin tensor of material-substructure. 

Let the logarithmic (Hencky) strain rate (ln )V  be 
additively decomposed into the elastic strain rate ((ln ) )eV  
and the inelastic strain rate ((ln ) )iV , i.e. 

(ln ) = ((ln ) ) ((ln ) )e i+V V V .               (5) 
Further, let the inelastic strain rate ((ln ) )iV  be additively 
decomposed into the plastic strain rate ((ln ) ) pV  and the 
tangential strain rate ((ln ) )tV , i.e. 

((ln ) ) = ((ln ) ) ((ln ) )pi t+V V V ,              (6) 

provided that ((ln ) ) pV  and ((ln ) )tV  are induced by the 
stress rate component normal and tangential, respectively, to 
the yield and/or loading surface. 

Assume that the elastic logarithmic (Hencky) strain 
tensor (ln )eV is derived from the following complementary 
energy (or Gibbs function) we, i.e. 

(ln ) = ( )ee W∂
∂V σ
σ ,                             (7) 

where σ  is Cauchy stress. It results from Eq. (7) that 
1((ln ) ) =e −V E σ ,                            (8) 

putting the elastic modulus E as  
2

2
1( )eW −∂≡

∂
E σ ,                                 (9) 

where 1( )−  stands for the inverse tensor.  
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The complementary energy function We may be given by  

  

2 21 tr tr= 2 2
eW E E

ν ν+ −σ σ                  (10) 
for metals and 

 

0

21= ln 1 tr( )4
{ }e ppW p pG

γ ∗− + σ , 
0

( ) = ( )np
pG pc   (11) 

for soils, where E, ν , γ,  c and n are material constants, and 
p and p0 are the pressure and its initial value, respectively. 

The following tensors may be substituted for the spin 
tensor Λ  of material-substructure. 

T

T

= ( )/2 :  continuum sipn for Jaumann rate

= :  polar spin for Green - Naghdi rate
=

= :  Eulerian spin for Eulerian rate
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(12) 

{ ((ln ) ) ((ln ) ) }p p pξ≡ −W σ V V σ ,            (13) 
where ξ is the material parameter. 

Assume that the elastic rotation is far smaller than the 
plastic one and thus the rotation is induced plastically, i.e. 

(ln ) = ((ln ) )

           = ((ln ) ) (ln ) (ln ) ,
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      (14) 

 
Let the following yield condition be assumed.  

( ) ( )=f F H, Hσ ,                        (15) 
where the scalar H and the second-order tensor H are the 
isotropic and the anisotropic hardening variables, respec-
tively. The function f is assumed to be homogeneous of de-
gree one in the stress σ . 

In the subloading surface model the conventional yield 
surface is renamed as the normal-yield surface. Then, the 
following subloading surface is introduced, which always 
passes through the current stress point and also keeps a 
shape similar to the normal-yield surface and the orientation 
of similarity to the normal-yield surface with respect to the 
origin of stress space, i.e. = 0σ .  

( ) ( )=f RF H, Hσ ,                        (16) 
where R is the normal-yield ratio denoting the ratio of the 
size of subloading surface to that of normal-yield surface. Eq. 
(16) leads to 

  

( ) ( )tr tr =
, , { } { }f f R F R F

••∂ ∂+ +∂ ∂
H H

HH
σ σσσ .    (17) 

Let the following evolution equation of the normal-yield 
ratio R be assumed.  
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 ( )= ((ln ) )    for ((ln ) )p pRR U
•

≠V V 0 ,           (18) 
where U is a monotonically decreasing function of the nor-
mal-yield ratio R, fulfilling  
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                         (19) 

Let the function U satisfying Eq. (19) be simply given by  
( ) ln=U R u R− ,                               (20) 

where u is the material constant. 
The substitution of Eq. (18) into Eq. (17) leads to the 

consistency condition extended to the subloading surface: 

  

( ) ( )tr tr, , { } { }f f∂ ∂+ ∂∂
H H

HH
σ σσσ

 

((ln ) )= pU F R F
•

+V .         (21) 
Assume the plastic flow rule 

((ln ) ) =p λV N ,                        (22) 

where λ is the positive proportionality factor and 

( ) ( ) || ||( = 1)
, , f f∂ ∂

≡
∂∂

H HN N
σ σ

σσ
.          (23) 

The substitution of Eq. (22) into Eq. (21) leads to 

  

( ) ( )tr tr =
, , { } { }f f 'U F RF hλ λ∂ ∂+ +

∂ ∂
H H

H
H

σ σσ
σ

,  (24) 

where 
/F dF dH' ≡ .                         (25) 

/ ,   /h H λ λ
•

≡ ≡h H ,                      (26) 
from which one has 

 tr( )
pM

λ ≡
Nσ ,                           (27) 

where 
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by use of the following relation based on Euler’s theorem for 
a homogeneous function. 
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Adopt the plastic flow rule 
 

 
t r( )((ln ) ) =p

pM
NV Nσ .                   (30) 

Further, modifying the tangential strain rate of Hashigu-
chi (1998) or Hashiguchi and Tsutsumi (2001), the tangen-
tial plastic strain rate was given by Hashiguchi (2003) as 

11 *=((ln ) ) tt
T

−EV σ ,                        (31) 
where 

= nt
∗∗ ∗−σσ σ ,  tr( )n∗ ∗ ∗≡ n nσ σ ,             (32) 

*( )( ) ** **   = ( || || = 1)*|| ||
ff ∂∂

≡ ∂∂( ) ( ) N
n nN

σσ
σσ

, (33) 

= / bT Rξ .                               (34) 
b is a material constant and ξ is a material function of the 
stress and the plastic internal variables in general.  ( )∗  des-
ignates a deviatoric component. 

The logarithmic strain rate is given from Eqs. (5), (6), 
(8), (30) and (31) as follows: 

 1 1tr( ) 1 *(ln ) = p tTM
− −+ +

NV E N Eσσ σ .           (35) 

From Eq. (35) one has 
 

   

tr( )
t r{ ln( ) } = t r( ) t r( ) pM

+
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σ
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tr( )
= { t r( )}p

pM
M

+
N

NEN
σ ,      (36) 

The positive proportionality factor λ  in the flow rule (22) is 
expressed in terms of strain rate, rewriting λ by Λ, from Eq. 
(36) as follows: 

 

 

{ (ln ) }t r=
t r( )pΛ

M +

VNE
NEN

.                       (37) 

The loading criterion is given as follows (Hashiguchi, 
2000): 

((ln ) ) :  0,

((ln ) ) = :  0

p

p

Λ
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V 0
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                  (38) 

 
It holds from Eqs. (35) and (37) that 

 

 

{ (ln ) }t r 1(ln )= t r( )p tM T
∗− −

+
VNEVE E NNENσ σ .      (39) 

Eqs. (32) and (39) leads to 

 

 

 

 

{ (ln ) }t r= t r (ln )
t r( ) ]{ }[ )( pt M
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+

VNEn E E N nV
NEN

σ σ . 

(40) 
Substituting Eq. (40) into Eq. (39), one has  

 

 

{ (ln ) }t r(ln )=
t r( )[ ]pM

−
+

VNEVE E N
NEN
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1 1 { (ln ) }t r(ln )t r
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(41) 
which results in the expression of stress rate in terms of 
strain rate. 

  

1= (ln ) (ln ){ }t r1 [TT
∗ ∗++

VE Vn nEσ  

 

 

 

{ (ln ) }t r { t r( )t r( )
}]p T

M
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+
VNE EN n nNENEN

.    (42) 
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