音響的にソフトな面を持つ高性能遮音壁の3次元空間内における特性

1.はじめに

遮音壁の性能はその高さに依存するが、遮音 壁の高さを上げることは日照・電波障害への影 響など種々の問題がある。

このような状況の中、従来の単壁(地面に対 して垂直な平面上の遮音壁)に比べて騒音低減 効果の高い遮音壁を実現する方法のひとつに障 害物の表面が音響的にソフトであれば、その障 害物背後の音場が小さくなることに着目し、壁 表面に音響管を配列した管配列遮音壁¹⁾があり 二次元空間内での特性の概要は既に報告してい るが今回、三次元空間内で境界要素法及び波動 回折理論の解析解も含めて管配列遮音壁の基本 的な性能を評価したのでその結果を報告する。

図1 遮音壁概観

2. 音響的にソフトな面の形成

管配列遮音壁は音響的ソフトな表面を形成す ることで遮音壁背後の音場を低くしている。音 響的にソフトな表面の条件とは、その表面で常 に音圧がゼロになるということである。この条 件を全周波数に対して同時に満たすには、空気 より遙かに密度の小さい音響材料が必要となる。 しかしこのような材料は存在しないので、それ を実現する手段として、一端の閉じた1/4 波長音 響管の開口部音圧が非常に小さくなる性質を利 用した。この1/4 波長の音響特性は周波数依存ソ フトな表面の効果を十分に発揮できない。管配 列遮音壁はその点を考慮し、遮音壁表面の音響 管の他に壁先端部に短い音響管を取り付けるこ とで幅広い周波数に対応させた。 北海道大学 正 長谷部正基(株)長大 正 石原 泰北海道環境科学研究センター 棗 庄輔

3. 半無限障壁に関する回折理論と境界要素法 による音場解析

管配列遮音壁の音響的特性を捉えるため、管 配列遮音壁の性能を波動回折理論及び境界要素 法を用いて検討した。

3.1 波動回折理論に関して

地表面があるときの音場を考慮するとき、音 源から放射された音波の、図 2 のような幾何学 的配置における受音点 R での総合音場 Φ は、音 源 S とその地中の像 T が受音点 R において寄与 する成分、見かけの受音点 X において寄与する 成分、同様に音源 S の遮音壁に対する虚像 U に 寄与する成分の和で求めることができる。

この考え方を式で表すと次式で示される。な お本研究では地表面、遮音壁表面ともに完全反 射としている。

キーワード:遮音壁、道路交通騒音、回折

側

3.2 境界要素法と回折理論の比較

計算は Pierce の解析解(点音源)と二次元境 界要素法(干渉性線音源)を用い、解析解では単 壁(地面に垂直に設置された平面)と音響的ソフ トな面を持つ遮音壁、境界要素法では単壁と管配 列遮音壁に関してそれぞれ挿入損失を計算した。 ここでの挿入損失は遮音壁設置後の音圧レベル から、自由空間での音圧レベルを差し引いた値で ある。境界要素法で扱った管配列遮音壁の断面図、 及び配置図を図3に示す。管配列遮音壁の断面図、 及び配置図を図3に示す。管配列遮音壁の制御対 象周波数は、音響管の深さ40cmと壁先端の短い 音響管の深さ20cmが1/4波長にあたる周波数間 の領域である。したがって、制御対象周波数は、 215Hz から425Hz となる。音源は遮音壁前面から 2m、地表面上0m、受音点は遮音壁背面から10m、 地表面上0mに設定した。

結果を図3に示す。管配列遮音壁と同じ厚み を持つ単壁に関して、干渉性線音源に対する解 を表す二次元境界要素法と点音源に対する Pierceの解析解が精度よく一致している。 Hothersall³⁾らが報告した、干渉性線音源に関する 二次元境界要素法による遮音壁の挿入損失がほぼ 一致することと同じ結果を得た。

図3 Pierceの解析解と二次元境界要素法の挿入損失値

一方、波動回折理論におけるソフトな面とは、 現実的に存在する状態ではないが、壁表面が全 周波数において完全にソフトな表面を形成して いると考えられる。図3によると、制御対象周 波数の領域では音響管によるソフトな表面の挿 入損失が Pierce の解析解による理想的なソフト な表面の性能に近いと考えられる。

4. 有限長遮音壁の音場計算

4.1 三次元境界要素法の適用

前節までの結果は無限長遮音壁に対するもの

であるが、図4に示されたモデル周辺の三次元音 場の数値解析を境界要素法によって行うことで、 有限長管配列遮音壁に関する挿入損失を評価す る。

図4 有限長管配列遮音壁の寸法

4.2 挿入損失及び音圧レベル分布の計算結果

図5は音源、受音点が遮音壁面に垂直面内で 且つ図3と同じ配置位置での挿入損失の計算結 果である。管配列遮音壁は三次元境界要素法に よる計算に関しても制御対象周波数を中心に大 きな減衰効果が見られる。

図5 挿入損失の計算結果

本研究で行った有限長遮音壁性能改善の研究 の応用としては、実用上沿道出入りのため連続 性のとぎれる低層遮音壁の高性能化が考えられ る。

参考文献

1) M. Hasebe: New profile noise barrier with an acoustically soft surface, Proc.WESTPRAC VII, 747-750, 2000.

2) A.D.Pierce: Diffraction of around corners and overwidebarriers, J.Acoust.Soc.Am.Vol.55, p941-9 55(1974).

3)D.H.Hothersall,S.N.Chandler-Wild,

M.N.Hajmirzae: Efficiency of single noise barriers, Journal of Sound and Vibration, 146(2), p.303-309 (1991).