コンクリート配合条件とフレッシュ性状に及ぼす強さクラス32.5セメントの影響

太平洋セメント（株） 中央研究所 正会員 〇小早川真
太平洋セメント（株） 中央研究所 正会員 三谷裕二
太平洋セメント（株） 中央研究所 正会員 山田一夫
太平洋セメント（株） 中央研究所 正会員 大森啓至

1. はじめに
コンクリートの適切なワーカビリティーは打設場所の形状や配筋状況により異なる。経験豊富なコンクリート技術者はコンクリートのワーカビリティーの違いを様々な尺度で評価している。しかし現在生コンに規定されている尺度はスランプのみであり、2002年度版土木学会コンクリート示方書、施工編の解説においては、スランプ以外もその指標が必要と示されている。

呼び強度が低いコンクリートでは、NPCよりも欧州規格（EN197-1:2000）の強さクラス32.5セメントを用いた方が、単位粉体量が増加しワーカビリティーが良好になると予想される。そこで表-1に示す4種のセメントを用いワーカビリティーを多面的にとらえ、セメント種類（強さ）がコンクリートのフレッシュ性状に与える影響についてDIN拡がりを指標に評価し、汎用コンクリートの配合設計について考察した。

2. 実験概要
コンクリートの練混ぜ量は35リットルとし、強制パン型ミキサーを使用した。一般的な配合則に基づきスランプ12cmのコンクリートのフレッシュ性状が良好となる条件を推定するために、セメント材料の影響を評価した。コンクリートは呼び強度を24, 36の2水準とした。単位粉体量を

<table>
<thead>
<tr>
<th>セメント/呼び強度</th>
<th>W/C</th>
<th>s/a</th>
<th>単位量（kg/m³）</th>
<th>減水剤/減水率</th>
<th>AE助剤/AE助剤</th>
<th>JIS A1101</th>
<th>DIN1048</th>
<th>坍壊指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 24-AE</td>
<td>60.0</td>
<td>47.5</td>
<td>171</td>
<td>285</td>
<td>348</td>
<td>521</td>
<td>1035</td>
<td>1.8 / 112</td>
</tr>
<tr>
<td>36-AE</td>
<td>44.5</td>
<td>44.5</td>
<td>172</td>
<td>307</td>
<td>308</td>
<td>463</td>
<td>1014</td>
<td>1.5 / 105</td>
</tr>
<tr>
<td>LS 24-AE</td>
<td>53.3</td>
<td>46.0</td>
<td>171</td>
<td>321</td>
<td>331</td>
<td>494</td>
<td>1067</td>
<td>1.8 / 124</td>
</tr>
<tr>
<td>36-AE</td>
<td>39.6</td>
<td>40.5</td>
<td>178</td>
<td>449</td>
<td>298</td>
<td>554</td>
<td>1070</td>
<td>2.0 / 121</td>
</tr>
<tr>
<td>N 24-AE</td>
<td>72.7</td>
<td>49.5</td>
<td>171</td>
<td>285</td>
<td>348</td>
<td>521</td>
<td>1035</td>
<td>0.8 / 112</td>
</tr>
<tr>
<td>36-AE</td>
<td>53.5</td>
<td>46.0</td>
<td>176</td>
<td>329</td>
<td>329</td>
<td>493</td>
<td>1044</td>
<td>0.8 / 112</td>
</tr>
</tbody>
</table>

キーワード: 単位ベース量, 水セメント比, ワーカビリティー, DIN拡がり, ISO規格セメント
連絡先: 〒285-8655 千葉県佐倉市大作2-4-2 太平洋セメント(株)中央研究所 TEL043-498-3905
変化させるために強さの異なるセメントを用いた。強さクラスがそれぞれ52.5, 42.5であるNPCおよび高炉B種セメント、また強さクラス32.5の試験セメントの2種類、計4種のセメントを比較した。AE減水剤配合（AE配合）ではスランプ12cm一定とするために必要な単位水量を決定した。s/aは、N30AEで最も適当を定め、他の配合ではW/Cが5％大きくなる毎に1％増加させた。LS36AEでは粘性が高く、すなわちs/aを調整した。

高性能AE減水剤（SP）を用いてセメント量を減少させた。AE配合（減水率12％）を基にSP配合では減水率を20％に設定して単位水量を定め、SP量によりスランプを合わせた。N24SPではSP量の変化ではスランプ12cmを得られなかったため、減水率を15％とした。

スランプ一定条件でのフレッシュ性状の違いを数値化するためにDIN1048の崩壊試験を行った。本試験は衝撃的な外力を与えるため、再現性が高い試験であり、簡便である。また落下による材料分離の指標を求めた。落下分離指数は数字が大きいほど分離が大きいことを示す。

3. 実験結果

配合、フレッシュ性状および圧縮強度の結果を表-2に示す。スランプ、空気量はほぼ一定であった。材齢28日の圧縮強度は呼び強度毎にほぼ一定であった。N24、BB24の場合は、単位セメント量が少なく単位水量が多く、AE・SP配合いずれも崩壊したタイプのスランプであり、落下分離指数が大きかった。単位セメント量がそれより多いもののは崩壊タイプのスランプであり、特にLS36AEでは粘性が高いかった。

基本的な配合要素である単位水量、水セメント体積比（ベースト粘度の間接的指標）およびベースト体積の関係を図-1に示し、それにDIN崩の値を最小自乗法により等高線として表し、配合要因とフレッシュ性状の変化傾向の関係を示した。

ベースト量が少なくW/Cが大きい場合は、材料分離が生じ易い状態であり、またDIN崩も大きかった。AE配合のN、BBでは呼び強度変化に伴う単位水量の変化が大きく、ベースト体積の変化は小さかった。BL、LSでは呼び強度変化に伴う単位水量変化が小さく、ベースト体積が増加していた。W/C（体積比）=1.5～2.0、すなわちW/C（質量比）=0.5～0.6、かつベースト体積260-280リットルの範囲では単位水量とDIN崩の等高線は平行になった。ベースト体積の大きいものではDIN崩の等高線はW/C（体積比）とほぼ平行になった。SP使用による単位水量変化（ベースト量変化）ではDIN崩の変化は小さかった。DIN崩の適切な範囲は、フレッシュ性状を目視により良好と判断し図-1中に示した領域より、460-520mmであった。DIN崩がその領域外では、調整可能な配合因子であるs/aを最適化することにより良好なフレッシュ性状に改善可能と考えられる。今後横軸を粘度とした検討を行いたい。

4. まとめ

1）呼び強度が低い場合、強さクラス32.5セメントの使用により良好なワーカビリティとなった。
2）本実験条件においてDIN崩はベーストの粘度とベースト量である程度説明可能なことがわかった。

【参考文献】
1）社団法人日本コンクリート工学協会：フレッシュコンクリートの挙動研究委員会報告書、p.20, 1990
2）笠井芳夫、池田尚治編：コンクリートの試験方法 上、技術書院、pp.165-166, 1993