フライアッシュを多量使用した高流動コンクリートに対する高性能 AE 減水剤使用量の推定

和歌山工業高等専門学校 正会員 三岩敬孝

1.はじめに

近年、石油資源の枯渇化に伴う石油価格の高騰などから、世界的に豊富に埋蔵されている石炭が見直され、石炭を原料とした石炭火力発電所が建設されてきている.しかし、石炭火力発電所の増加に伴って、副産される石炭灰(フライアッシュ)も増加し、その処理が問題となってきている.

そこで本研究では,多種多様なコンクリートの中で,粉体量の多い粉体系高流動コンクリートに着目し,フライアッシュを細骨材として利用した場合,所要の要求性能を満足することができる高性能 AE 減水剤使用量について検討した.

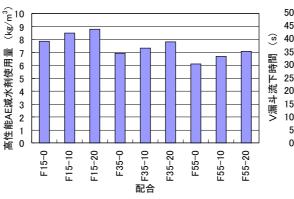
2.実験概要

(1)使用材料:セメントは普通ポルトランドセメント(密度 3.15g/cm³)を使用した.細骨材は徳島県那賀川産の川砂(表乾密度 2.62g/cm³,吸水率 1.24%,粗粒率 2.92),粗骨材は兵庫県赤穂産砕石(最大寸法 20mm,表乾密度 2.63g/cm³,吸水率 0.73%,粗粒率 6.88)を使用した.フライアッシュは JIS 規定で 種に相当するものである.また,混和剤として高性能 AE 減水剤(ポリカルボン酸エーテル系)及び空気量調整剤(高アルキルカルボン酸系)を使用した.

(2) コンクリートの配合:実験に使用した高流動コンクリートの配合は,単位水量,単位セメント量,単位細骨材量および単位粗骨材量を一定とし,結合材容積に対して 15,35 および 55vol%のフライアッシュを代替使用し,さらにそれぞれの配合の細骨材容積に対して,10 および 20vol%のフライアッシュを代替使用した.また,目標スランプフロー値が 650 ± 50 mm,目標空気量が $5\pm1.5\%$ となるように高性能 AE 減水剤使用量および空気量調整剤使用量を調整した.実験に使用した高流動コンクリートの配合を表-1に示す.

3. 結果と考察

図-1 にそれぞれの配合における高性能 AE 減水剤使用量を示す.この図より,フライアッシュを結合材に対して代替使用した場合,高性能 AE 減水剤使用量は減少するものの,細骨材に対して代替使用した場合,高性能 AE 減水剤使用量は増加する.


また,それぞれの配合におけるV漏斗流下時間を図-2に示す.この図より,スランプフロー値は一定であるものの,フライアッシュを細骨材に対して代替使用するほどV漏斗流下時間は長くなる.つまり,スラン

				10 1		, , ,						
配合記号	水粉体比 W/(C+F _c +F _s) (%)	総フライ アッシュ 量 (kg)	結合材 代替率 (vol%)	細骨材 代替率 (vol%)	水 W (kg)	結合材		細骨材]	高性能	空気量
						セメント C (kg)	フライアッ シュ F _c (kg)	フライア ッシュ F _S (kg)	細骨材 (kg)	粗骨材 (kg)	AE 減水 剤(kg)	調整剤 (kg)
基本配合	28.3	0	0	0		617	0	0	702	818	0	0
F15-0	29.6	67	15	0			67	0	702		7.88	1.58
F15-10	26.8	128		10		525		61	632		8.52	2.10
F15-20	24.5	189		20				122	562		8.76	2.62
F35-0	31.4	156	35	0	175	401	156	0	702		6.96	1.20
F35-10	28.3	217		10				61	632		7.32	1.60
F35-20	25.8	278		20				122	562		7.84	2.01
F55-0	33.4	246	55	0		278	246	0	702		6.12	0.83
F55-10	29.9	307		10				61	632		6.68	1.14
F55-20	27.1	368		20				122	562		7.08	1.42

表-1 コンクリートの配合

キーワード:フライアッシュ,高流動コンクリート,高性能 AE 減水剤,相対フロー面積比,相対漏斗速度比連絡先:和歌山県御坊市名田町野島 77, TEL:0738-29-8454, FAX:0738-29-8469

プフロー値で評価 した流動性が同じ であっても,粘性 の大きい高流動コ ンクリートである といえる これは, フライアッシュが 細骨材に比較して 水を拘束すること や,フライアッシ ュを細骨材容積に

高性能 AE 減水剤使用量 図-1

対して代替使用することにより 粉体量が増加すること等により, 所要の流動性を確保するために必要な高性能 AE 減水剤使用量が 増加するためである.このため,要求される性能を満足するため には、スランプフロー値で評価される流動性と漏斗流下時間で評 価される材料分離抵抗性を含めた指標で検討する必要がある.

そこで、流動性を評価する指標であるスランプフロー値から得 られる相対フロー面積比(c)および材料分離抵抗性を評価する 指標である漏斗流下時間から得られる相対漏斗速度比(Rc)を適 用し $^{1)}$,コンクリートとしての相対フロー面積比(c)と相対漏斗速 度比 (Rc) との比 (c/Rc) と全粉体量 (P) に対する高性能 AE 減 水剤使用量(SP)との関係を図-3に示す.

この図から、結合材容積に対するフライアッシュの代替率を一定と し,細骨材容積に対して代替使用した場合, c/Rc と SP/P は直線関 係で表すことができる.

しかし,それぞれの直線の傾きおよび切片は結合材容積に対するフ ライアッシュの代替率によって異なる.

そこで 図-3 で近似した直線の傾きおよび y 切片を図-4 および図-5 にそれぞれ示す.これらの図より, c/RcとSP/Pとの直線関係の傾 きおよび v 切片は, 結合材容積に対するフライアッシュの代替率に比 例することがわかる.

つまり,要求性能である流動性および材料分離抵抗性をあらかじめ 仮定し、結合材容積に対する代替率が既知であれば、それぞれの要求 性能を満足するために必要な高性能 AE 減水剤使用量が推定できる. 4.まとめ

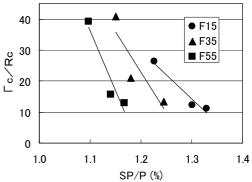


図-3 c/Rcと SP/P との関係

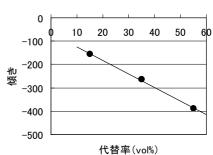
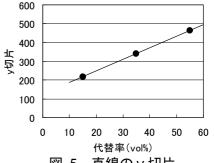



図-4 直線の傾き

直線のy切片 図-5

フライアッシュを細骨材として使用した高流動コンクリートにおいても,相対フロー面積比と相対漏斗速 度比との比(c/Rc)と全粉体量に対する高性能 AE 減水剤使用量(SP/P)は,ある切片を持つ直線関係で 表すことができることから,目標スランプフロー値及び目標 V 漏斗流下時間を設定することで,高性能 AE 減水剤使用量を推定することができる.

参考文献 1)大内雅博,日比野誠,菅俣匠,岡村甫;自己充填コンクリート用高性能 AE 減水剤の効果の定量 的評価法 , コンクリート工学年次論文報告集 , Vol.20 , pp.355-360 , 1998