ひび割れを有するコンクリート中への塩化物イオン拡散に関する基礎的研究

鹿児島大学大学院	学生員	前田	聡
鹿児島大学工学部	正会員	武若	耕司
鹿児島大学工学部	正会員	山口	明伸
鹿児島大学大学院		北畠	裕之

1. はじめに

コンクリート構造物には,施工不良,乾燥収縮や載荷などによってひび割れが生じる場合が少なくない. 海洋環境下ではコンクリートにひび割れが生じると、そこから塩化物イオンなどの腐食因子が容易に侵入す るため塩害の進行が助長される、コンクリート中へ浸透する塩化物イオン量は、一般に塩化物イオンの見か けの拡散係数(以下,拡散係数と称す)を求めることにより推定可能であるが,ひび割れがコンクリート中 への塩化物イオン拡散に与える影響は未だ明らかでない.そこで本研究では,ひび割れ幅と塩化物イオン拡 散性状の関係を明確にすることを目的とし、ひび割れ幅と水セメント比を要因とした簡易拡散セル実験を行 った.さらに,拡散モデルによって得られた結果を逆解析し,ひび割れ部の拡散係数の推定も試みた.

2. 塩化物イオン拡散実験 2.1 拡散セル実験概要

セル実験に用いた供試体は,普通ポルトランドセメント を使用し,水セメント比を30,40,50,70%として表-1に。 示す配合で作製した 10cm モルタル円柱供試体に,割裂に よるひび割れを導入した後,ひび割れ幅に応じて 1~5cm

の範囲で切り出したものである.導入ひび割れは,ひび割れ無しから腐食性 環境の許容ひび割れ幅にほぼ相当する 0.2mm 付近までのものである. なお, 以下に示す各供試体のひび割れ幅の値は,断面中央部近辺の7点における幅 の平均である.拡散セル実験は図-1に示すように, 室に 3%NaCI 水溶液,

室に蒸留水を入れ,2室の間に供試体をセットしたセル装置を用いて行っ た.実験中は定期的に塩水側と蒸留水側の CI-濃度を測定した.なお,セッ トした供試体は実験直前に蒸留水による飽水状態である.セル実験では,図-1の高 CI 濃度室(室)から 低 CI-濃度室 (室) へー定時間に移動する塩化物イオン量を測定し,式(1)により拡散係数を算出した.

$$D_c = \frac{V \cdot L}{S \cdot C} \cdot \frac{C}{t}$$
(1)

- ここに, D_c: 拡散係数(cm²/sec), V: 蒸留水側の容積(cm³),
 - L:供試体厚さ(cm),S:試験面積(cm²),
 - C : 室側の塩化物イオン濃度(mol/l),
 - C/ t: 室側の CI⁻濃度の増加率(mol/l/sec) 2.2 実験結果および考察

図-2に,(1)式をもとに算出したひび割れを有する供試

体の塩化物イオン拡散係数とひび割れ幅の関係をまとめて 示した.いずれの水セメント比においてもひび割れ幅が大きくなるのに伴い,拡散係数は大きくなる傾向が 認められた.このことから,ひび割れを有するコンクリート中の塩化物イオン拡散性状は,明らかにひび割 れ幅に依存することが分かる.また,図-3には拡散係数とひび割れ幅との関係を水セメント比ごとに比較し

拡散係数(cm²/sec)

【キーワード】 塩化物イオン拡散係数,拡散セル,ひび割れ幅 【連絡先】 〒890-0065 鹿児島市郡元 1-21-40 鹿児島大学工学部 TEL (FAX) 099-285-8480

表-1	モルタノ	レ配合お	よびフロ	_
1.8 - 1	L/V//		み い ノ ロ	

W/C	W/C S/C		単位量 (kg/m ³)			フロー値
(%)	5/0	W	С	S	(%)	(mm)
30	1.22	280	933	1139	0.5	204
40	1.25	336	839	1049	-	204
50	2.59	280	560	1448	-	209
70	3.95	280	400	1581	-	191

室 C 室

CI

CI

図-2 ひび割れ幅と拡散係数の関係

て示した.その結果から水セメント比70%のモルタルの拡散係 数は,比較的小さなひび割れ幅においてもひび割れの影響を受 けているのに対して,水セメント比40あるいは50%のモルタ ルにおいては,ひび割れ幅0.05mm以下では,ひび割れの拡散係 数へ及ぼす影響はあまり認められず,それ以上のひび割れ幅に おいて拡散係数が急激に大きくなった.これらのことから,通 常,塩害環境下で使用されるコンクリートの水セメント比の範 囲では少なくともひび割れ幅が0.05mm以下では塩化物イオン 拡散係数はコンクリート自身の品質の影響を受け、ひび割れ幅 が 0.05mm 以上となってはじめてひび割れの影響を大きく受け ると考えられた.

3. FEM 解析によるひび割れ部の塩化物イオン拡散係数の推定

3.1 FEM 拡散解析の概要

以上の実験より得られた拡散係数は,ひび割れ部ならびにモル タル部(健全部)を含めた見かけの値であり,ひび割れ部だけの 拡散係数を表したものではない.そこで,塩化物イオン拡散にお

けるひび割れの影響をより定量的に評価するために, FEM 解析による検討を行った.図-4 に解析に用いたモ デルの概要を示す.このモデルは幅 0.1㎝ の三角形要素より構成される高さ 1.4㎝ , 幅 3.0㎝ のセルモデル で、セル実験と同じ条件となるように、3%NaCI水溶液、モルタル、および蒸留水のセル領域を設定し、ひび 割れ部をモルタル領域の中央に設けたものである 塩化物イオン拡散は Fickの第2法則に従うものとした. 解析にあたっては,モルタル部の拡散係数は各水セメント比ごとに一定の値を設定し,ひびわれ部の拡散係 数を段階的に変化させて解析を行い,ひび割れを有するモルタル全体の見かけの拡散係数を算出した.

3.2 解析結果および考察

図-5 に解析結果の一例を示す.ひび割れ部の拡散係数が10⁻⁸~10⁻⁶(cm²/sec) の範囲では,ひび割れ部の拡散係数が見かけの拡散係数に及ぼす影響は小さい が、それ以上においてはひび割れ部の拡散係数の増加に伴い、見かけの拡散係 数も増加する傾向が認められた.また,図-6には,図-5の解析結果と図-3の実 験より得られたひび割れを有するモルタルの見かけの拡散係数とを対応させる ことにより,ひび割れ幅に応じたひび割れ部の拡散係数の推定値を示した.当 然のことながら,水セメント比のいかんに拘らず,ひび割れ幅が大きくなるに 従ってひび割れ部の拡散係数も大きくなっているが,値には上限があり,ひび 割れ幅がおよそ2.0mm以上になるとほとんど同一の値と見なしても差し支えな

いようである.一方,水セメント比50%の場合には,ひび割れ 幅が 0.05mm 以下では, ひび割れ部の拡散係数は 10-8~10-7 (cm²/sec)程度とひび割れが無い場合とほとんど変わらず,ひ び割れの影響は小さいものと考えられた.

4. まとめ

水セメント比 50%程度においては,ひび割れ幅 0.05mm 以下 では,ひび割れが塩化物イオン拡散性状に及ぼす影響はほとん どないが、ひび割れ幅0.05mm以上ではひび割れが拡散性を支配 することを確認した.また,0.2mm 程度までのひび割れについ て,ひび割れ幅に応じたひび割れ部の拡散係数を定量的に示す ことができた.

図-4 解析モデル概要図

10-3

10-4

10⁻⁵

数