超長大吊橋の主塔のための鉄筋コンクリート充填鋼管(RCFT)構造

八戸工業大学	学生会員	毛利栄一郎
八戸工業大学	フェロー会員	塩井幸武
八戸工業大学	正会員	長谷川明

1.はじめに

津軽海峡大橋は北海道と本州を結ぶ連絡橋である。現在、下北半島の大間 崎と亀田半島の汐首岬を結ぶルートと、津軽海峡の竜飛岬と松前半島の白神 岬を結ぶルートが計画されている(図-1)。この構想で提案されている2 ルートの距離はともに19kmであり、津軽海峡大橋は全長20kmとなる計 画である。また、津軽海峡は水深が深く、国際海峡であるということから、 橋脚数が少ないことが望ましい。そのことから2000m+4000m+4000m+ 2000mの4径間連続梁(図-2)と計画した結果、主塔基部にかかる荷重 が70万トンとなる。このような、超長大橋の設計において従来の鉄筋コン クリート(RC)、鋼製の主塔では実現が難しくなっている。そこで我々は、 鋼管と、コンクリートまたはRCを合成したコンクリート充填鋼管(CFT)、 鉄筋コンクリート充填鋼管(RCFT)構造の力学的特性を明らかにし、津軽 海峡大橋の実現へ役立てることを目的としている。

2.研究概要

本試験は、橋脚をモデルとした円形断面の CFT、 RCFT、RC、鋼管試験体に正負交番水平載荷実験(図 -3)を実施し、曲げせん断試験を行った。試験体 の寸法は図 -4に示す。荷重制御方式とし、載荷速 度1kN/sec、載荷ピッチ10kNとし、塑性域から3 回の繰り返し載荷とした。ひずみは鋼管表面44カ 所、内部コンクリート24カ所で測定した。試験の 終了条件は最大荷重の90%とした。

使用材料は、普通鋼管に SS490、リブ付鋼管に STK490、主鉄筋(6mm)に SR235、帯鉄筋(3mm)に SWRM6TM(鋼線)を使用した。コンク リートは圧縮強度 46.8N/mm²の高強度コンクリー ト、圧縮強度 23.7N/mm²の低強度コンクリートとし た。

測定項目は各試験体の最大曲げモーメント、変位、 ひずみである。

3.試験結果

表 - 1 に、最大曲げモーメント、靱性率を示す。 最大曲げモーメントは R60LW が最も高く、次いで

図 - 1 津軽海峡大橋のルート

図-4 試験体寸法 (mm)

R60HM、R60LBとなり、リブ付きの試験体が高い値を示した。配筋別では二重リング、大リング、小リングの

キーワード 津軽海峡大橋、コンクリート充填鋼管、鉄筋コンクリート充填鋼管、リブ、靱性
連絡先 : 八戸工業大学構造工学研究所塩井研究室 Tel.0178-25-3111(内 3107) E-mail www-shioi@stud.hi-tech.ac.jp

順となった。これは、二重リング、大リングとも、外側に鉄 筋を配置しているため、コンクリート表面からのひび割れを 抑制しているためと考えられる。また、リブ付鋼管と普通鋼 管を比較すると、充填コンクリートの破壊状況に違いが見ら れた。普通鋼管を使用した CFT、RCFT では、試験体基部に 大きなひび割れが集中している(写真-1)のに対し、リプ付 鋼管を使用した CFT、RCFT はリブの部分からの小さなひび がみられ、大きなひびは見られなかった(写真-2)。このこと から、リブはコンクリートと鋼管の付着を高める作用の他に、 ひび割れを分散させ、ひび割れによる強度低下を抑制すると 考えられる。

靱性率は最大荷重 90%時の変位を、初期降伏時の変位で除 した。全供試体の中で、N45HM が最も高い値を示した。配 筋別に比較すると、二重リングが高い値を示した。また、CFT よりも RCFT の方が高い靱性を示した。

図 - 5 にリブ付鋼管 6.0mm に RC (大リング)を充填した RCFT の断面ひずみ分布図を示す。この図は試験体 の左側から水平載荷(引き)時の断面内のひずみ分布である。中空鋼管では中立軸が断面の中心にあるが、コン クリートを充填することで圧縮側断面が小断面になり、圧縮側に中立軸が移動してバランスする。なお、鋼管に、 高強度コンクリートを充填すると中立軸が更に圧縮へシフトする。ひずみが小さい初期の段階では充填コンクリ ートと鋼管のひずみがほぼ直線上にあるが、終局状態では、引張側の充填コンクリートのひずみがほとんど増大 しなくり、引張側コンクリートのひび割れの発生が推定される。以上のことから、充填コンクリートは構造部材 として積極的に評価することができる。

地震時の、エネルギー吸収性能については、等価減衰定数を用いて評価した。図 - 6に RCFT (リブ付鋼管) 試験体の減衰定数を示す。中空鋼管に比べ、CFT、RCFT が高い値を示した。

4.まとめ

1)鋼管にコンクリートを充填す ることで、高い耐荷力と靱性を確 保できる。

2)鋼管内部にリブを取り付ける ことにより、合成効果を高める作 用とともに、リブからの小さなひ び割れを発生させ、大きなひび割 れを抑制する効果がある。

3)配筋を二重にすることで、最 大曲げモーメント、靱性とも高い 値を示す。

4)CFT、RCFT は高いエネルギ一吸収性能を有する。

以上のことから、CFT、RCFT は、超長大橋の主塔としても、十 分な信頼できる構造物といえる。

図 - 6 RCFT (リブ付)の減衰定数

衣- 試験結果				
試験体名	板厚(mm)	特徴	最大曲げ	靱性率
			モーメント	(σ ₉₀ /σ
			(kN∙m)	y)
N32CH	3.2	鋼管のみ	87.35	2.5
N32HM		高強度コンクリート	188.96	6.5
N32LM		低強度コンクリート	160.76	7.2
N45CH	4.5	鋼管のみ	140.81	2.0
N45HM		高強度コンクリート	219.83	7.8
N45LM		低強度コンクリート	158.48	7.0
N60CH	6.0	鋼管のみ	204.77	4.4
N60HM		高強度コンクリート	262.22	3.6
N60LM		低強度コンクリート	263.49	3.2
N60LB		RCFT(大リング)	*205.67	*
N60LS		RCFT(小リング)	*200.52	*
N60LW		RCFT(二重)	293.34	3.8
R60CH	・ リブ付6.0	鋼管のみ	262.71	2.1
R60HM		高強度コンクリート	380.33	2.7
R60LM		低強度コンクリート	325.46	2.3
R60LB		RCFT(大リング)	379.50	3.1
R60LS		RCFT(小リング)	349.85	3.2
R60LW		RCFT(二重)	380.34	4.5
CLB	鋼管なし	RC(大リング)	17.51	-
CLS		RC(小リング)	20.78	_
CLW		RC(二重)	35.42	-
*計測トラブル				

表 - 1 試験結果

写真-2 リブ付鋼管の内部