表面波試験法によるアスファルト舗装の構造評価

東京電機大学 学生会員 横田 明之 鹿島道路(株)技術研究所 正会員 東 滋夫 東京電機大学 フェロー会員 松井 邦人 東京電機大学 正会員 小林 利雄

1.はじめに

舗装構造の評価のための非破壊試験法として、FWD 試験機が世界的に標準試験機の地位を確立しつつある。しかし、試験機だけでは十分ではなく、測定したたわみデータから舗装を診断するシステムの確立が重要である。これまで、多くの方法が提案され、議論されてきたが結論に至っていない。一方、舗装構造評価の別法として、表面波試験法の可能性が注目されている。欧米では、本試験の舗装への適用に関して研究が進んでいるものの、わが国では舗装に関してこの種の研究は皆無に近い。本研究では、舗装に適用できる表面波試験法を確立することを目指している。そして、FWD 試験と比較し、両試験の良否を明らかにすることを目的としている。

2.SASW 試験

半無限弾性体を伝播する波には、実体波(S波・P波)と表面波(レイリー波・ラブ波)がある。特に表面に鉛直な動荷重が作用する場合、レイリー波は全エネルギーの約70%にもなる。レイリー波の特徴は表面に沿って伝播し、その深さ方向の範囲は、ほぼ1波長であることが知られている。そのため層状構造の場合、周波数により伝播速度が異なるという分散性が観察される。SASW 試験では、この分散性により、層状構造の層厚と各層の弾性係数を推定している。解析の流れは次の順序で行なう。

発振子(インパルスハンマー等)で舗装表面に衝撃を与え、受信子で表面波を測定する 測定した波形データのスペクトル解析を行なう 波長と位相速度の関係より分散曲線を描く 分散曲線の形状より各層の層厚を推定する。層厚 の推定深度には、以下の提案式を使用した

$$D = 0.5\lambda$$
(文献) $D = 0.3\lambda$ (文献) $D = 0.2\lambda$

表面波をS波と仮定し、弾性係数を求める。弾性 係数は以下の式で推定する

$$E = 2(1+v)G\tag{1}$$

$V_S = \sqrt{G/\rho} \tag{2}$

3.試験方法

解析に使用したデータは、2001年12月4日に鹿島 道路テストピットで測定した加速度波形である。試験 断面は、A 交通・D 交通、2 断面で測定を行なった。 インパルスハンマーで加振を行ない、載荷点から一直 線上に5個の加速度計をL₂=30cm 間隔に並べ、それぞ れの加速度計を両面テープで固定し測定を行なった。 載荷点と一番近い加速度計との距離(以後、載荷間距離 と称し)を L₁=30,60,90cm として、一箇所につき 10 回 載荷した。ch1 側からの載荷を正方向、ch5 側からの載 荷を逆方向として、2 パターンの載荷を行なった。ま た、同じ条件でランマー・タガネによる載荷も行なっ た。タガネ載荷は、高周波測定のため、鋼材を敷いて その上から加振を行なうものとする。SASW 試験の概 要は、図1に示し、試験断面は図2に示す。また、各 層の層厚は既知であり、密度・ポアソン比は、仮定し 図 2 に記す。

図1 SASW 試験概要

【A交通断面】	【D交通断面】		
表層 $t = 5.1cm$ $v_1 = 0.35$ $\rho_1 = 2.3g/cm^3$	表層 $t = 5.9 cm \ v_1 = 0.35$ $\rho_1 = 2.3 g / cm^3$		
上層路盤 $t = 9.3cm$ $v_2 = 0.35$	基層 $t = 10.3cm$ $v_1 = 0.35$ $\rho_1 = 2.3g/cm^3$		
$\rho_2 = 1.9g/cm^3$ 下層路盤 $t = 24.4cm$	上層路盤 $t = 8.4 cm \ v_2 = 0.35$ $\rho_2 = 1.9 g / cm^3$		
$v_3 = 0.35$ $\rho_3 = 1.8 g / cm^3$	t = 15.3cm 上層路盤 $v_2 = 0.35$ $\rho_2 = 1.9g/cm^3$		
路床 $v_4 = 0.40$ $\rho_4 = 1.8g / cm^3$	下層路盤 $t = 18.2 cm$ $v_3 = 0.35$ $\rho_3 = 1.8 g / cm^3$		
	路床 $v_4 = 0.40$ $\rho_4 = 1.8 g/cm^3$		

図2 試験断面

キーワード:舗装、SASW 試験法、FWD 試験法、層弾性係数、層厚、分散曲線

連絡先: 〒350-0394 埼玉県比企郡鳩山町大字石坂 TEL: 0492(96)5731 内線(2734), FAX: 0492(96)6501

[タガネ載荷]

図 5 波長と位相速度の関係[A 交通断面]

ハシマー載荷	弾性系数 (FWD記義)	弾性系数 (SASW語類)	層冥真値	層享02 λ)	層享03 3)	層写(05 λ)
膥	5610 MPa	9703 MPa	5.1 cm	5.0 cm	6.5 cm	10.0 cm
上層盤	317 MPa	2514 MPa	9.3 cm	10.0 cm	13.0 cm	22.5 cm
下層盤	153 MPa	1524 MPa	24.4 cm	15.0 cm	23.0 cm	40.0 cm
路床	63 MPa	367 MPa	*************	***************************************	***************************************	***********

外冷載荷	弾性系数 (FWD記義)	弾性系数 (SASW記義)	層乳真値	層厚02λ)	層 享 0.3 λ)	層写0.5 λ)
膥	5610 MPa	9703 MPa	5.1 cm	5.0 cm	60 cm	10.0 cm
上層盤	317 MPa	1847 MPa	9.3 cm	10.0 cm	15.0 cm	25.0 cm
下層盤	153 MPa	1264 MPa	24.4 cm	17.0 cm	25.0 cm	40.0 cm
路床	63 MPa	202 MPa	***************************************	***************************************	***************************************	*************

4.解析結果

各載荷間距離のデータを使用して解析を行なった結果、 A 交通・D 交通同様に L1=90cm の場合には、どの CH の データを用いて解析させても安定した分散曲線を得ら れることから、載荷間距離 L1=90cm のデータを使用す る。図3にパワスペクトル、図4にコヒレンス関数、 図5に波長と位相速度の関係をそれぞれ示す。

5.まとめ

(1)今回の試験で、測定した波形データを用いて求めた 分散曲線から、容易に舗装の断面図を推定することが できた。真値と比較して、深度の提案式は、0.2%が有

効であると思われる。

(2) 載荷間距離 L1 は、90cm 以上であることが望ましい (3)今後、本試験の信頼性を高める上で FEM を用いた数 値シミュレーションやインバージョン手法による理論 の整備が必要である。

参考文献

[1] W.Heukelom and C.R.Foster::Dynamic Testing of Pavements. Journal of the soil Mechanics and Foundaion

Division of ASCE, Vol.86, No.SMI, Feb, 1960

[2] M.E.Szendrei and C.R.Freeme:Road responses to Vibration Tests. Journal of the soil Mechanics and Foundation Division of ASCE, Vol.96, No.SM6, Nov. 1970, pp 2099-2124