| 東京電機大学 | 学生会員   | 横田 | 明之 | 鹿島道路(株)技術研究所 | 正会員 | 東  | 滋夫 |
|--------|--------|----|----|--------------|-----|----|----|
| 東京電機大学 | フェロー会員 | 松井 | 邦人 | 東京電機大学       | 正会員 | 小林 | 利雄 |

#### <u>1.はじめに</u>

舗装構造の評価のための非破壊試験法として、FWD 試験機が世界的に標準試験機の地位を確立しつつある。 しかし、試験機だけでは十分ではなく、測定したたわ みデータから舗装を診断するシステムの確立が重要で ある。これまで、多くの方法が提案され、議論されて きたが結論に至っていない。一方、舗装構造評価の別 法として、表面波試験法の可能性が注目されている。 欧米では、本試験の舗装への適用に関して研究が進ん でいるものの、わが国では舗装に関してこの種の研究 は皆無に近い。本研究では、舗装に適用できる表面波 試験法を確立することを目指している。そして、FWD 試験と比較し、両試験の良否を明らかにすることを目 的としている。

## <u>2.SASW 試験</u>

半無限弾性体を伝播する波には、実体波(S波・P波) と表面波(レイリー波・ラブ波)がある。特に表面に鉛 直な動荷重が作用する場合、レイリー波は全エネルギ ーの約70%にもなる。レイリー波の特徴は表面に沿っ て伝播し、その深さ方向の範囲は、ほぼ1波長である ことが知られている。そのため層状構造の場合、周波 数により伝播速度が異なるという分散性が観察される。 SASW 試験では、この分散性により、層状構造の層厚 と各層の弾性係数を推定している。解析の流れは次の 順序で行なう。

発振子(インパルスハンマー等)で舗装表面に衝撃 を与え、受信子で表面波を測定する 測定した波形データのスペクトル解析を行なう 波長と位相速度の関係より分散曲線を描く 分散曲線の形状より各層の層厚を推定する。層厚 の推定深度には、以下の提案式を使用した

$$D = 0.5\lambda(文献)$$
  $D = 0.3\lambda(文献)$   
 $D = 0.2\lambda$   
表面波を S 波と仮定し、弾性係数を求める。

係数は以下の式で推定する

$$E = 2(1+v)G$$

 $V_{\rm S} = \sqrt{G / \rho} \tag{2}$ 

#### <u>3.試験方法</u>

解析に使用したデータは、2001 年 12 月 4 日に鹿島 道路テストピットで測定した加速度波形である。試験 断面は、A 交通・D 交通、2 断面で測定を行なった。 インパルスハンマーで加振を行ない、載荷点から一直 線上に 5 個の加速度計を L2=30cm 間隔に並べ、それぞ れの加速度計を両面テープで固定し測定を行なった。 載荷点と一番近い加速度計との距離(以後、載荷間距離 と称し)を L<sub>1</sub>=30,60,90cm として、一箇所につき 10 回 載荷した。ch1 側からの載荷を正方向、ch5 側からの載 荷を逆方向として、2 パターンの載荷を行なった。ま た、同じ条件でランマー・タガネによる載荷も行なっ た。タガネ載荷は、高周波測定のため、鋼材を敷いて その上から加振を行なうものとする。SASW 試験の概 要は、図1に示し、試験断面は図2に示す。また、各 層の層厚は既知であり、密度・ポアソン比は、仮定し 図2に記す。



図1 SASW 試験概要

| 【A交通断面】 |                                                      |                          | 【D交通断面】                                                    |  |  |  |
|---------|------------------------------------------------------|--------------------------|------------------------------------------------------------|--|--|--|
| 表       | 民層 $t = 5.1 cm$ $v_1 = 0$<br>$\rho_1 = 2.3 g / cm^3$ | 0.35                     | 表層 $t = 5.9  cm  v_1 = 0.35$<br>$\rho_1 = 2.3  g  /  cm^3$ |  |  |  |
| F       | :層路盤 $t = 9.3$<br>$v_2 = 0.3$                        | 3 <i>cm</i><br>35        | 基層 $t = 10.3 cm v_1 = 0.35$<br>$\rho_1 = 2.3 g / cm^3$     |  |  |  |
| <b></b> | $\rho_2 = 1.9$<br>下層路盤 $t = 24$                      | g/cm<br>.4cm             | 上層路盤 $t = 8.4 cm$ $v_2 = 0.35$<br>$\rho_2 = 1.9g/cm^3$     |  |  |  |
|         | $v_3 = 0.3$<br>$\rho_3 = 1.8$                        | $\frac{35}{g/cm^3}$      | 上層路盤 $p_2 = 0.35$<br>$\rho_2 = 1.9g/cm^3$                  |  |  |  |
| 路       | 各床 $v_4 = 0.40$<br>$\rho_4 = 1.8g$                   | )<br>g / cm <sup>3</sup> | 下層路盤 $t = 18.2 cm$<br>$v_3 = 0.35$<br>$\rho_3 = 1.8g/cm^3$ |  |  |  |
|         |                                                      |                          | 路床 $v_4 = 0.40$<br>$\rho_4 = 1.8g / cm^3$                  |  |  |  |
|         | N                                                    | 12                       | 試驗紙面                                                       |  |  |  |

キーワード:舗装、SASW 試験法、FWD 試験法、層弾性係数、層厚、分散曲線 連絡先:〒350-0394 埼玉県比企郡鳩山町大字石坂 TEL:0492(96)5731 内線(2734), FAX:0492(96)6501

弾性

(1)

12000

12000

[タガネ載荷]



× 10-0



[インパルスハンマー載荷]



図 5 波長と位相速度の関係[A 交通断面]

| ハンマ-載荷 | 弾虫系数<br>(FWD試験) | 人<br>(SASW語歌) | 層冥真値    | <b>層冥02</b> λ) | <b>層冥0.3</b> λ) | <b>層冥0</b> 5λ) |
|--------|-----------------|---------------|---------|----------------|-----------------|----------------|
| 表層     | 5610 MPa        | 9703 MPa      | 5.1 cm  | 5.0 cm         | 6.5 cm          | 10.0 cm        |
| 上層翻    | 317 MPa         | 2514 MPa      | 9.3 cm  | 10.0 cm        | 13.0 cm         | 22.5 cm        |
| 下層翻    | 153 MPa         | 1524 MPa      | 24.4 cm | 15.0 cm        | 23.0 cm         | 40.0 cm        |
| 踏床     | 63 MPa          | 367 MPa       | *****   | ****           | *****           | *****          |

## 4.解析結果

各載荷間距離のデータを使用して解析を行なった結果、 A 交通・D 交通同様に L1=90cm の場合には、どの CH の データを用いて解析させても安定した分散曲線を得ら れることから、載荷間距離 L1=90cm のデータを使用す る。図3にパワスペクトル、図4にコヒレンス関数、 図5に波長と位相速度の関係をそれぞれ示す。

# 5.まとめ

(1)今回の試験で、測定した波形データを用いて求めた 分散曲線から、容易に舗装の断面図を推定することが できた。真値と比較して、深度の提案式は、0.2λが有

| 知论载荷 | 弾虫殺数<br>(FWD調義) | 弾虫殺数<br>(SASW試験) | 層東真面    | 層頁02λ)  | <b>層頁0.3</b> λ) | <b>層頁0</b> 5λ) |
|------|-----------------|------------------|---------|---------|-----------------|----------------|
| 表層   | 5610 MPa        | 9703 MPa         | 5.1 cm  | 5.0 cm  | 60 cm           | 10.0 cm        |
| 上層翻  | 317 MPa         | 1847 MPa         | 9.3 cm  | 10.0 cm | 15.0 cm         | 25.0 cm        |
| 下層翻出 | 153 MPa         | 1264 MPa         | 24.4 cm | 17.0 cm | 25.0 cm         | 40.0 cm        |
| 踏床   | 63 MPa          | 202 MPa          | ****    | *****   | ****            | **             |

## 効であると思われる。

(2) 載荷間距離 L1 は、90cm 以上であることが望ましい (3)今後、本試験の信頼性を高める上で FEM を用いた数 値シミュレーションやインバージョン手法による理論 の整備が必要である。

#### 参考文献

[1] W.Heukelom and C.R.Foster.:Dynamic Testing of Pavements. Journal of the soil Mechanics and Foundaion

Division of ASCE, Vol.86, No.SMI, Feb, 1960

[2] M.E.Szendrei and C.R.Freeme:Road responses to Vibration Tests. Journal of the soil

Mechanics and Foundation Division of ASCE, Vol.96, No.SM6, Nov.1970, pp2099-2124

104