CFRP シートにより補強された RC はりの曲げ挙動に関する実験的研究

北海学園大学工学部	学生会員	〇丸山	興治
北海学園大学工学部	正会員	高橋	義裕

1. はじめに

補強材の一つとして、高い引張強度を持ち軽量で耐食性に優れている CFRP シート(以下「シート」と呼ぶ)を 既存構造物の補強材に用いた事例が増えつつあり、現在合理的な補強設計法の確立に向けての積極的な検討がなさ れている。そこで本研究では、引張主鉄筋に異形鉄筋を使用し、下面部シートとコンクリートの間に緩衝材を用い て貼付した矩形断面 RC はりの曲げ実験を行った。(緩衝材を使用しなかった場合については、平成 13 年度土木学会 年次学術講演会にて発表済み¹⁾)

2.実験概要

実験供試体は合計7体で形状は図―1に示す。せん断補強鉄筋はD10(SD295)を10cm間隔で配置した。S0はシ ート補強を一切行わず、S1K、S2K、S3Kはそれぞれ下面部にシートを1層、2層、3層貼付した。S1KZ、S2KZ、S3KZ はS1K、S2K、S3Kと全く同様の補強を行った供試体に、さらに5cm幅のシートを5cm間隔でゼブラ状に、はり高さ (30cm)までU字巻き上げ補強した(以下「ゼブラ補強」と呼ぶ)。各実験供試体に用いた材料の力学特性を表―1 に、実験結果一覧を表―2に示す。

以上の事により各実験供試体の中央位置での変位、主鉄筋およびシートひずみを測定した。

3.実験結果および考察

シート補強を行わなかった場合と、下面部にシート補強を行った場合の最大耐力比較では、明らかに後者の方が 耐力は増加しており、シート補強効果が認められる(S0、S1K)。また、シート補強の層数で比較すると、シート1 層につき約20~30KN程度の耐力増加が見られた(S1K、S2K、S3K)。同様にゼブラ補強を行った場合においては、シ ート1層につき約40KN程度の耐力増加となり、ゼブラ補強なしの場合よりも増加率が大きかった(S1KZ、S2KZ、S3KZ)。 いずれの場合においても、緩衝材を使用しなかった前回¹⁾よりも若干の最大耐力増加が見られた。

図−2は中央位置における荷重一変位関係を示したものである。図−2(a)はS0、S1K、S2K、S3K について、図−2 (b)はS1KZ、S2KZ、S3KZ について示したものである。図中には断面分割法による計算値も示してある。ただし、本 計算ではシートの剥離は考慮されておらず、シートとコンクリートは完全付着を仮定している。このため、計算値 が実測値より、曲げ剛性が若干大きめに算出されているものと思われる。しかし、主鉄筋の降伏点荷重は、計算値 と実測値は近い値となっている。

図−3は中央位置での荷重−主鉄筋ひずみの関係を示したものである。図−3(a)はS0、S1K、S2K、S3K について、 図−3(b)はS1KZ、S2KZ、S3KZ について示したものであり、図中には図−2同様、断面分割法による計算値も示して ある。約40KN 付近に1次変曲点の存在が確認できるが、これは、ひびわれ発生開始点を表しているものと推測され る。このことは、計算値を含む全ての供試体(緩衝材を使用しなかった前回も参照¹⁾)において共通していること から、補強形態や緩衝材の有無に依存しないものと考えられる。

図-4は中央位置での荷重-シートひずみの関係を示したものである。図-4(a)はS0、S1K、S2K、S3K について、 図-4(b)はS1KZ、S2KZ、S3KZ について示したものであり、図中には図-2、図-3同様、断面分割法による計算値 も示しており、計算値はシート終局時近傍においては実測値に近い値となっている。S1K、S1KZ においてシート中 央での破断が、S2KZ、S3KZ では一部ゼブラ破断が見られた。これは緩衝材を使用しなかった前回¹⁾には見られなか った大きな特徴である。このことは、緩衝材を用いることにより応力分布の分散性が増加し、シート性能を大きく 引き出せる可能性を示唆している。

4. まとめ

今後さらに検討すべき点もあるが、本研究の範囲で得られた知見を以下に示す。

(1) ひびわれ発生荷重は補強形態や緩衝材の有無に依存しない。

キーワード 緩衝材、シート、ゼブラ補強

連絡先 〒064-0926 札幌市中央区南 26 条西 11 丁目 1-1 TEL: (011) 841-1161 (代表) 内線 776

(2) 緩衝材を用いることにより、シート性能をさらに引き出せる可能性がある。

参考文献

1) 丸山、高橋: 炭素繊維シートにより曲げ補強した RC はりの耐力及び変形に関する実験的研究、土木学会第 56 回年次学術講演概要集第 5 部、pp. 1054-1055、2001

図-1 供試体図

えート 使用材料の力学特性								
	Туре	Cross sectional area (mm²)	Young's modulus (GPa)	Yield strength (MPa)	Tensible strength (MPa)			
Stool	D10	71.3	200	377	537			
Steel	D19	286.5	180	371	578			
Sheet		1.65	230		3480			

片日井刻 今 十 学 柱 林

%Cross sectional area in width of 10mm

表一2 実験結果一覧

Specimen No. (MPa)	Tension reinforcement		Sheet		Ultimate	
			Number	A _{Sheet}	load	
	Туре	Ps	of sheet	(mm²)	(KN)	
S0	47.5	D19×2	1.146			213
S1K	50.3	D19×2	1.146	1	28.05	254
S2K	50.3	D19×2	1.146	2	56.10	278
S3K	49.5	D19×2	1.146	3	84.15	311
S1KZ	50.1	D19×2	1.146	1	28.05	249
S2KZ	40.4	D19×2	1.146	2	56.10	291
S3KZ	46.3	D19×2	1.146	3	84.15	330

