シート製埋設型伸縮装置による縦目地改良について

首都高速道路公団 正会員 渡邊 敏行 非会員 (株)東京ロート エンシ゛ニアリンク゛ 柳田 健一郎 ㈱太陽道路 非会員 能登 敬一 日鉄コンポジット(株) 非会員 村上 信吉

1.はじめに

首都高速道路の東京西地区だけでも約 3,300m の縦目地伸縮装置(以下、縦目地と称す)が存在する。縦 目地は原則として車線と車線との間に設けるので、車両が通常に車線内で走行して際には支障は起きないと 考えられるが、出入口や連結路の分合流に設置されることが多く、この場合、走行車両が縦目地の上を縦断 的に走行することとなる。

現在採用されている縦目地は、ゴム製型品の表面材が露出した構造となっているものが多い。それらゴム 製型品の表面のすべり抵抗値は、周辺のアスファルト合材表面のすべり抵抗値と異なっているので、特に雨 天時の走行安全性の確保が求められている。そのため、滑り止め材塗布により対応していたが、対策後の表 面材の磨耗や剥離によるすべり抵抗が減少し、根本的な解決策として縦目地の改良を目的とした検討を進め てきた。

その結果、シート製埋設型伸縮装置を開発し、首都高速都心環状線において施工を実施したので報告する。

2.シート製埋設型伸縮装置について

2.1 埋設ジョイント工法

近年、走行安定性の向上、 伸縮装置から発生する騒 音・振動に対する近隣住民 の環境向上を目的として、 ノージョイント工法を実施 している。その中の埋設ジ ョイント工法は、他のノー ジョイント工法と比較して、 大掛かりな工事を必要とせ ず、伸縮部の舗装材料、伸 縮装置自体の簡易な施工で 対処することができる大き なメリットを有している ¹⁾

2.2 シート製埋設型伸縮装 置の基本構造

今回開発・設置したシー ト製埋設型伸縮装置は、上 述の埋設ジョイント工法に 類するものである。その基 本構造を図 - 1 に示す。

PBO 繊維の選定

ここで使用されている PBO 繊維 は、現存する強化繊維の中で、最高 レベルの強度を有し、かつ高強度炭 素繊維を凌駕する弾性率を有する繊 維である。表 - 1 に PBO 繊維シート の性能を示す。

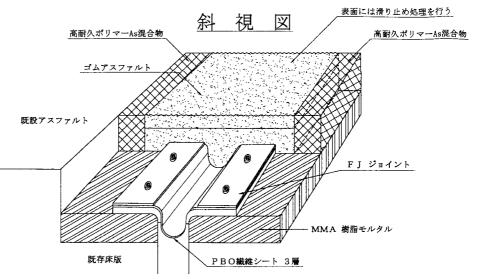


図 - 1 シート製埋設型伸縮装置の構造

表 - 1 PBO 繊維の物性

	引張り強度(kgf/cm2)	ヤング (kgf/cm3)
PBO 繊維	36,000	270,000
高強度炭素繊維	35,500	235,000
アラミド繊維	21,000	120,000

ゴムアスファルトの選定

シート製埋設型伸縮装置の上層材として、たわみによる変形追従性に優れているゴムアスファルト(ファ ルコン)について、試験体を製作し実験を行った。目標変形量として、せん断方向(水平方向) ± 17.5mm(35mm)、

キーワード:伸縮装置、すべり抵抗、繊維シート、ゴムアスファルト、変形追随性

連絡先:首都高速道路公団 東京第一保全部 設計課

〒188-0014 東京都中央区新富 1-1-3 TEL: 03-3552-1476, FAX: 03-5541-7734

上下方向(鉛直変位) ± 15 mm(30mm)、目地伸縮方向(橋軸直角方向) ± 10 mm(20mm)とし、以下の設定にて、変形性能確認試験を行った。試験は変形制御とし、試験機の制約から 1 つの試験体に対し、上下方向、せん断方向、伸縮方向をそれぞれ別々に与えることにして行った。

試験体幅 : 25cm 試験体長さ:46cm

載荷方法 : ひずみ速度 10mm/min

以上の変形性能確認試験より、ひび割れ、剥離等の材料変形が起こらなかったことを確認した。 また、表 - 2 のゴムアスファルト (ファルコン)の物性において、加熱アスコン程度のすべり抵抗性があることがわかる。

以上により、シート製埋設型伸縮装置の上層材をゴムアスファルト(ファルコン)を採用した。

表・2 コムア人ノアルド(ファルコノ)の物性					
	試 験 項	目	ファルコン SS(G)	加熱アスコン	
比重		g/cm ³	2.0 ± 0.1	2.3	
曲げ破断ひずみ		(-10)	0.8×10^{-1}	6.0 × 10 ⁻³	
繰返し曲げ		(-10)破壊回数	160,000 回(非破壊)	60,000 回	
マーシャル試験	安定度	k g	100 (非破壊)	500 以上	
(60)	フロー値	1/100cm	60	20 ~ 40	
スパ [°] イクラヘ゛リンク゛		(-10)摩耗量 cm ²	0.85	0.9 ~ 1.6	
すべり抵抗		B.P.N	61.0	60 ~ 75	

表 - 2 ゴムアスファルト(ファルコン)の物性

3.シート製埋設型伸縮装置の施工

3.1 首都高速道路上における施工

首都高速道路において、交通量が増大する昼間をさけ、交通量が減少される夜間施工を原則としている。時間帯は 22 時から 6 時の実作業時間 7 時間/日である。

3.2 シート製埋設型伸縮装置の施工

シート製埋設型伸縮装置も、上述を満足する夜間施工内に取り替えを完了しなければならない。実績では、1 日当たり 3.6m の取替え施工となった。

既存の伸縮装置からシート製埋設型伸縮装置への取替え エフロー図を図 - 2 に示す。既設ジョイントの撤去工では、 後打ちコンクリートをカッターで切断し、ブレーカーにて、 所定の深さまで撤去する。下層材の打設工までに、R 鋼板・メ ネジアンカーを設置する。その後、コンクリートプライマー を塗布し、床版と下層材(FJ - 20)との接着性を高めた。続い て、その下層材上部に樹脂モルタル(FJ - 10)を塗布し、伸縮 装置(PBO 繊維シート・鋼板)との接着性を高めた。最後に上層 材を打設する前に、PBO 繊維シートとの接着性を高めるため、 プライマーを塗布し、2 層に分け上層材を打設した。

4.まとめ

縦目地の改良を目的とした検討を平成 10 年度から設計検討・室内試験を行い、平成 11 年度には試験施工(約 30m)を行い、1 年間経過観測した結果、問題ないことを確認したため、平成 12、13 年度にて実施施工を行った。現在のところ異常が見られない。今後、設置箇所の追跡調査による耐久性の評価とともに、他の変形特性を有する縦目地への適用について検討していく。

施工手順 既設ジョイント撤去 2 R鋼板、メネジアンカー設置 7 コンクリートプライマー塗布 FJ-20下層用樹脂モルタル打設 ⑤ FJ-10樹脂モルタル羹布 77 ⑥ FJジョイント本体設置 ⑦ F J-10樹脂モルタル鈴布 ⑧ 専用プライマー塗布後、高耐久ポリマーAs混合物打設 $\{\ \ \}$ FCプライマー塗布 100 ゴムアスファルト打設(1層目,2層目)

図 - 2 シート製埋設型伸縮装置設置(取り替え) フロー

施工完了

[参考文献]

1) 関口幹夫:炭素繊維繊維シート製埋設ジョイント工法による騒音・振動低減効果について、平 10.東京都土木技術年報、pp.111-116、1998