解体コンクリートを全量使用した現場再生コンクリートの構造物への適用

奥村組 正会員〇松田敦夫 正会員 大河澄男 正会員 廣中哲也 国土交通省 川村俊一 登坂新次 塩谷 浩 テトラ 新山千尋 松園昌久 古本憲一

1. はじめに

自己循環型リサイクル技術として「解体コンク リートを現場内で全量骨材に利用した再生コンク リート(以下、現場再生コンクリートと称す)」 を開発した。今回、国土交通省関東地方整備局荒 川下流工事事務所の船着場新設工事舗装コンクリ ートと低水護岸工事自立鋼矢板帯コンクリートの 一部に適用した(写真1、写真2参照)。本報で は、構造物に適用した現場再生コンクリートの品 質および施工性について述べる。

2. 1 製造および施工方法

現場再生コンクリートは専用製造装置で製造した。図 1に製造手順を示す。20~30cm 程度に小割りしたコンク リート塊をクラッシャーで最大 40mm 程度に破砕し、ベ ルトコンベアにより計量ホッパーへ投入した。1バッチ 分の破砕物が計量完了後、ミキサーに排出し、同時に水、 セメント、化学混和剤を投入して練り混ぜ、排出する1)。 舗装コンクリートは破砕機に 15t/h 級自走式ジョーク ラッシャーを使用し、30m ブーム付ピストン式コンクリ ートポンプ車(配管径 5 インチ)で圧送施工した。帯コ ンクリートは専用製造装置搭載の 8t/h 級ジョークラッ シャーを使用し、ホイールローダで打込み場所まで運搬 後、コンクリートバケツで打設した。

表1に施工対象を示す。いずれも鋼材を使用している。

2.2 使用材料と配合

表1に配合および使用材料を示す。 両現場で骨材に同一の旧橋脚コンクリ ート破砕物を無分級、無洗浄でそのま ま全量使用した。帯コンクリート配合 は過去の実績配合をもとに 2)、舗装コ ンクリート配合は事前の圧送実験結果 をもとに初期強度発現性と耐凍害性に 配慮して決定した3)。

舗装コンクリート 写真 2 帯コンクリート 写真 1

施工対象 表 1

用途全体数量		適用数量	内 容
舗装	施工面積	180m²	厚さ t=350mm、タイバ - D32@400mm
コンクリート	1, 590 m²	$(64m^3)$	スリップ バーφ32@400mm、収縮目地5m ピッチ
帯	全長	20m	広神副矢板 600mm
コンクリート	28m	(4. 5m³)	主筋D13@200mm、配力筋D10@300mm

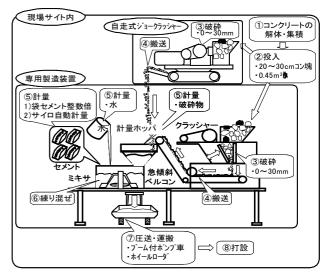


図 1 製造手順

表2 配合および使用材料

	施工法	磁物 最大寸法 (mm)	水セ火ト 比 W/C (%)	目標 スランプ (cm)	目標 空気量	単位量(kg/m²)				
用途						水 W	C TXYF	コンクリート 破砕物	避働	空気 調整剤
舗装 コンクリート	ポンプ 圧送	40	32. 0	8~15	4.5±1.5	182	568	1435	3. 301)	0.06
帯 コンクリート	コンクリート バケツ	40	36. 0	5~10	4.5±1.5	164	455	1563	0.442)	0.05

[使用材料]

セメント 普通ポルトランドセメント、比重3.16

コンクリート破砕物: 1920年代施工の橋脚コンクリート、気乾比重2.42

压縮鎖 21.9N/mm²、粒径0~5mm 吸水率9.3%、粒径5~40mm 吸水率4.2% 1) 高性能 AE 減水剤 ポリカルボン酸系(液体)、比重1.05

2) 高性能減水剤 ポリスチレンスルホン酸系(粉体)、アルカリ解砕紙入りタイプ 空气調整剤

陰イオン界面活性剤、比重1.02

キーワード:リサイクル、再生コンクリート、再生骨材、解体コンクリート、粒度分布

連絡先 : 〒300-2612 茨城県つくば市大砂 387 TEL 0298-65-1521 FAX 0298-65-0782

3. 品質試験結果

図2に現場再生コンクリートの骨材となる解体コンクリート破砕 物の粒度分布を示す。舗装コンクリートの 15t/h 級自走式ジョーク ラッシャー (クラッシャーサイズ 600mm×370mm) と帯コンクリー トの専用製造装置搭載 8t/h 級ジョークラッシャー (350mm× 250mm)の破砕粒度は、ほぼ一定の分布を示している。同一破砕形 式のクラッシャーで同一最大刃幅で破砕した場合の破砕粒度は、ク ラッシャーサイズが変化しても一定の値を示すことが分かる。

表3にフレッシュ時の試験結果を示す。舗装コンクリー トのスランプは 9.0~12.5cm と安定しており、空気量は 4.6~5.8%と目標値 4.5±1.5%の範囲内であった。今回の 用途はいずれも有筋部であったが、塩化物量は 0.06~ 0.09kg/m³と基準値 0.3kg/m³以下であった。

図3に養生方法と圧縮強度の経時変化、表4に舗装コン クリート配合の材齢 28 日の圧縮強度を基準にした強度比 を示す。材齢の経過にしたがって圧縮強度は増加しており、 今回の場合、冬季の現場気中養生でも 35N/mm² 以上の圧縮 強度が得られた。また、現場気中養生の圧縮強度は、標準 水中養生を下回っており、材齢28日では1割程度小さい。

材齢 28 日の圧縮強度を基準にした強度比は材齢 7 日で 0.82~0.86、 材齢 56 日で 1.05 であり、特に、初期の強度発現が速く、材齢 28 日以降の強度発現が少ないことが分かる。これは、水セメント比 40%程度の富配合の一般コンクリートと同様の傾向を示している 4)。 また、曲げ強度は 3.9~5.4N/mm2 で圧縮強度の 1/8~1/10 の値を 示し、一般のコンクリートの $1/5\sim1/7$ に比べて小さい 4 。

これは、骨材に使用した解体コンクリート破砕物の旧付着モルタル の影響によるもとの考えられる。 表 4 材齢 28 日の圧縮強度を基準にした強度比(舗装コン)

100 O舗装コンクリート (15t/h自走式ジョークラッシャー) 帯コンクリート 80 ક્ર (8t/h専用機ジョークラッシャー) |四分率 60 40 熳 20 n 0 1 10 100 0 01 ふるい目の開き(mm)

図2 解体コンケリート破砕物の粒度分布

表3 フレッシュ時の試験結果

用途	No	コンクリート温度 (°C)	空気量 (%)	スランプ (cm)	塩化物量 (kg/m³)	
	(1)	15. 5	5.0	11. 5	0.09	
	2	18. 5	5.8	12. 5	_	
舗装コンクリート	3	17. 0	4. 6	11. 5	-	
	(4)	17. 5	5. 1	9.0	0.09	
	5	17. 0	5.5	10. 0	-	
帯コンクリート	1	15. 0	5.0	11. 5	0.06	
.tb. 12777 1.	2	17. 0	4. 1	9. 5	0.07	

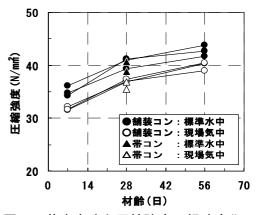


図3 養生方法と圧縮強度の経時変化

4. 施工性および出来形

写真3に舗装コンクリートの圧送状況を示す。 解体コンクリート中に混入していた鉄塊で閉塞し た以外は良好に圧送できた。また、両現場とも棒

Na	No.	圧縮強度 (N/mm²)			④曲げ強度 (N/mm²)	強度比			
	NO.	材齢			材齢 28 日	圧縮7日	圧縮 56 日	曲げ/圧縮	
		①7 日	②28 日	③56日	13 20 20 2	1/2	3/2	4/2	
	(1)	29.8	36. 4	1	3. 9	0. 82	-	0.11	
	(4)	35. 0	40.5	42. 7	5. 4	0.86	1. 05	0. 13	

状バイブレータにより容易に締固め可能で、低水セメント比のため表面仕 上げの時期は若干早くなった。

5. まとめ

解体コンクリートを全量骨材に使用した現場再生コンクリートを 2 種類 の構造物の一部に適用した。その結果、圧送施工が可能であり、安定した スランプと空気量、材齢 28 日で 35N/mm²の圧縮強度と 3.9N/mm²の曲げ強 度が得られることを確認した。

舗装コンクリート圧送状況

最後に、日立建機㈱の皆様を始め、ご協力頂いた関係各位に対し、深く感謝します。

[参考文献]

1) 松田ら : オンサイト・クローズド型再生コンクリートの概要、建設マネジメント技術、2001.4

: 解体コンクリート塊を全量使用した現場再生コンクリート階段ブロックへの適用、土木学会第56回年次学術講演会講演概要集第5部、2001.10

: 解体コンクリートを全量使用した現場再生コンクリートのポンプ圧送性能、土木学会第57回年次学術講演会講演概要集第5部、2002.9、発表予定

4) 岡田ら編:コンクリート工学ハンドブック、朝倉書店、1988