赤外線映像装置によるコンクリート内部欠陥深さ検出に関する研究

茨城大学大学院	学生会員	平田	寿磨
茨城大学工学部	正会員	沼尾	達弥
茨城大学工学部	正会員	福澤	公夫
茨城大学工学部	正会員	三井	雅一

1.はじめに

近年、コンクリート構造物の剥落事故などにより、 維持管理への関心が高まり、またその効率化や数値化、 定量化による信頼性の向上を目的とした非破壊検査機 器等の計測技術に注目が集まっている。非破壊検査手 法の一つに赤外線映像装置を利用したサーモグラフィ ー法がある。サーモグラフィー法とは、欠陥部と健全 部における熱伝導の差異を利用したものであり、欠陥 の存在箇所を定性的に判断するなどの概略調査等に用 いられている。しかしながら、コンクリート表面に生 じる温度分布が欠陥の状態のみならず、測定環境に大 きく影響されるため、コンクリート表面の温度分布か ら内部欠陥、特に欠陥深さを精度よく推定することが 困難である。

本研究では、サーモグラフィー法を用いて、コンク リート内部の欠陥深さ検出の可能性について実験的検 討を行った。

2.実験方法

2.1 実験の要因と水準

本実験では、模擬的に表面からの深さを変えた内部 欠陥を配置した供試体を用いて行った。熱移動は供試 体を一定温度に加熱したあと、室温環境に静置するこ とで生じさせた。その要因と水準を、表 - 1に示す。

2.2 供試体の配合と寸法

供試体は図1に示すように、300 × 300 × 200mm とした。コンクリートの配合は、水セメント比50%、 スランプ9 cm,空気量 2.5 ± 1.5 %として決定した。 また、内部欠陥として発泡スチロール製の板(100 ×100×10mm)を供試体中央部内部に配置した。

2.3 表面温度の測定方法

供試体は、24時間前に環境試験槽により充分に加 熱し、各温度水準の熱平衡状態にしておく。つぎに、 撮影直前に供試体を取り出して、室温20 に保たれ た恒温室内に移し表面温度を測定した。熱移動を表面 のみとするため、発泡スチロール製の断熱材により供 試体測定面以外の箇所を覆った。測定は、開始から3 0分間は1分毎に、30分後からは5分毎に開始1時 間経過時まで赤外線カメラにより行った。測定の概要 を図2に示す。

	要因	水準	
	加熱温度()	30、50、80	
	内部欠陥深さ(mm)	10 ,20 ,30 ,40 ,50	

図1 供試体

室温20℃恒温室

図2 表面温度測定概要

キーワード:非破壊検査、サーモグラフィー法、内部欠陥、欠陥深さ 連絡先:〒316-8511 茨城県日立市中成沢町4-12-1 TEL:0294-38-5274 FAX:0294-35-8146 2.4 実験結果と考察

赤外線画像の一例 として、内部欠陥1 cm供試体(50 加熱)における、1 時間経過時の画像を 写真1に示す。内部 欠陥箇所(供試体内 部に正方形状)の表

写真1

面温度分布が変化していることがわかる。

ここで、写真1に示すような3点、A,B,Cを設定 し、A点を欠陥部温度、B,C点の平均を健全部温度 とし、その温度差を求めた。内部欠陥 1 c m から5 c m の温度差の経過変化を、加熱温度ごとに表したも のが図3、4、5 である。

その結果、欠陥深さが小さいほど時間とともに温度 差が大きくなることがわかる。加熱温度が30,50

の場合、欠陥深さが4,5cmにおいては温度差が ほとんど見られないが、80 では、欠陥深さ4cm の場合、測定開始40分後付近からの温度差が約1.0

となる。加熱温度を上げ、測定時間を長くとること により欠陥深さ検出限界が上がるのが確認できた。 また、各温度の最大温度差と深さの関係を図6に示す。 加熱温度の上昇により、健全部と欠陥部との温度差も 上昇しており、欠陥深さと温度差がほぼ線形となるこ とがわかった。図7は加熱温度80 の場合の時間と 深さの関係を示す。内部欠陥深さにより検出される温 度差ごとに時間差があることがわかった。

3.まとめ

初期温度の上昇により、内部欠陥の検出を行うこと ができる深さが深くなることが確認できた。

供試体加熱温度 30 、50 では、欠陥深さ検出限 界が3 cm であることがわかった。また、80 におい ては欠陥検出限界が4 cm まで向上した。

表面温度変化を測定することにより、内部欠陥深さ がある程度推定可能である。

参考文献

1)高羅信彦、足立一郎、魚本健人:サーモグラフィー法 によるコンクリート内部空隙の検出精度に関する研究、土 木学会論文集、v-421,2001,10

図7 時間と深さの関係(80)