鋼製ダンパー・ブレースを柱中央に定着した RC 橋脚構造の加振試験

小林 俊彦†1, (財)鉄道総合技術研究所 正会員 正会員 松本 信之^{†1} 正会員 岡野 素之^{†2}, 大野 了^{†2}, 7II-会員 大内 -^{†2} (株)大林組

1.はじめに

RC 橋脚内に鋼製ダンパー・ブレースを取付けた構造は, 耐震性向上と大きなエネルギー吸収性が期待 でき 1),また,地震動による水平変位が抑制されることから列車走行性向上 2)なども期待できる。ブレー スを柱下端の基礎部に定着した構造(基本構造)の加振試験 3に続き,ブレースを柱中央に定着した構造の 加振試験を行ったので、その結果について報告する、

2.試験方法

2.1 試験体

試験体は,図-1に示す RC 橋脚に鋼製のダンパーとブレースを取付けた試験体(SCD)を用いた.試 験体の大きさは,鉄道の桁式高架橋をモデルとし,実大(高さ 8m 程度)の1/2.5 とした.上載質量(付 加マス)は2.1N/mm²の静的軸応力度が生じるように設定した.試験体に用いた材料特性を表-2に示す. SCD 試験体は、降伏震度 0.2 のダンパーとブレースを加え、全体の降伏震度を 0.6 となるように設定した.

試験体の緒子

	部材	項目	SCD諸元		
	柱	Н х В	280mm×280mm		
		$A_{s}(p_{t})$	D13-14 (0.94%)		
		$A_{w}(p_{w})$	D6 ctc40 (0.57%)		
	梁	Н х В	360mm × 800mm		
		$A_{s}(p_{t})$	D19-20(1.12%)		
		$A_w(p_t)$	D13 ctc160 (0.40%)		
	ブレース	$h \not \to t_w \not \to t_f$	H80 x80 x4.5 x4.5		

ダンパー $h \not = h = h \not = h \not = h \not = h \not = h = h = h = h = h$

圭 1

	쿡	長-2	材料特性		
使用部位		材質	降伏点 N/mm ²	引張強度 N/mm ²	ヤンク [*] 係数 ×10 ⁵ N/mm ²
	D6	SD345	348	473	1.95
	D13		351	500	1.86
鉄筋	D16		381	561	1.90
	D19		370	542	1.87
	D22		406	608	1.95
リンク材	ġī2,	LYP235	253	333	2.05
	フランシ	SMA490	396	574	2.06
ブレース SN		SMA490	394	508	1.96
	コンクリー	- ト	圧縮強度 N/mm ²	引張強度 N/mm ²	ヤンク [*] 係数 ×10 ⁴ N/mm ²
	試験前		32.2	2.67	2.44

2.2 加振方法

加振は振動台を用いて橋軸直角方向(試験体の面内方 向)の1方向のみに加振した.

加振のための入力地震波は、鉄道構造物等設計標準(耐 震設計)に示されているスペクトル適合波(L1地震動お よび L2 地震動スペクトル II) などを縮尺・伸張した ものを用いた.

図 - 2 G4地盤上の入力波の例 (L2 地震動スペクトル 適合波)

|測定は,RC橋脚の加速度,RC橋脚およびダンパー材各部の変位,鉄筋・ブレース・ダンパー材のひ ずみなどについて行った.

3.試験結果

3.1 加振過程と変形状況

キーワード: 耐震構造,鉄道RC高架橋,高減衰ダンパー,鋼製ブレース,列車走行性 連絡先 +1 〒185-8540 東京都国分寺市光町 2-8-38 TEL 042-573-7290 FAX 042-573-7320 +2 〒204-8558 東京都清瀬市下清戸 4-640 TEL 0424-95-0950 FAX 0424-95-0909

試験体は各種地震波の振幅を徐々に増加させながら加振を行った.また,ラン ダム加振などにより,その間の固有周期の推移についても測定した.

試験体 SCD は, G4 地盤上の L2 スペクトル 1 波(L2Spec1G4 波 330gal) 入 力時においてダンパーのウェブ 4 個所がせん断降伏した.次の L2Spec1G4 波 314gal 入力時にウェブの塑性座屈が始まり,L2Spec2G4 波 731gal において両方 の柱の下端で主筋が降伏した.次の L2Spec2G4 波 946gal 入力時で全ウェブが座 屈し,柱の上下端 4 箇所全ての主筋が降伏した.その後の kobe 波 1710gal 入力 時に柱上下端でコンクリートが剥落し,主筋の座屈が観察された.この時の最大

図 - 3 破壊状況

応答は 135mm で,部材角の 1/20 を 超えていた.

3.2 荷重 变位関係

図 - 4 に梁中心位置で測定した応 答加速度と上載質量の積から求めた 水平力とその位置での水平変位との 関係の例を示す.図 - 4(a)および(b) の最大入力加速度はそれぞれ 349gal,314galである.この時にR C橋脚のみでは塑性化しているが,

SCD 試験体は概ね弾性域に留まっており,変位が抑制されていることが分かる.図-5に SCD 試験体に対して L2Spec2G4 波 731gal で加振した時の荷重-変位関係を示す.柱は塑性化しているものの,変位は十分小さく,優れた制振効果が得られるとともに安定した減衰特性も得られている.

3.3 応答性状の比較

図 - 6 に RC 構造のみ,基本構 造および SCD 試験体の最大入力 加速度と最大応答変位との関係を 示す.ダンパー・ブレースがある 場合には,変位抑制効果が十分に 発揮され,SCD も基本構造に比し て遜色のないことが分かる.図-7 に最大入力加速度と最大応答加 速度の関係を示す.RC橋脚のみ

では,応答倍率が2を上回る場合も見られ,耐力も小さいが,ダンパー・ブレースの付いた試験体では応 答倍率は小さく,大きな入力地震動に対しても,振動抑制効果が十分に発揮されていること分かる.

<u>4.まとめ</u>

ダンパー・ブレースを柱中央に定着したRC橋脚においても,大変位加振時にブレースを柱下端の基礎 部に定着した構造に対して遜色のない優れた制振効果が発揮されていることが加振試験から得られた.

なお,本件は国土交通省の国庫補助金を受けて実施しました. 【参考文献】1)松本,岡野他:鋼製ダンパー・ブレースを有するRC鉄道高架橋の耐震性能,構造工学論文集,Vol45A,1999.3 2)松本,曽我部他:鋼製ダンパー・ブレースを用いた鉄道高架橋の振動性状改善に関する研究,構造工学論文集,Vol46A, 2000.3

3)小林,松本,岡野他:ダンパーブレース付き RC 橋脚構造の動的加振試験,土木学会第 55 回年次学術講演会, V 492, 2001.9

V-092