落石防護補強土壁のモデル衝撃実験に対する動的 FEM 解析

- (株)プロテックエンジニアリング 正会員 〇井上 昭一
 - 前田工繊株式会社工法開発部 竜田 尚希
- 永吉 哲哉 日本道路公団関西支社大阪技術事務所 正会員

吉田構造工学研究所 正会員 吉田 博

1. はじめに

柔な構造物である落石防護補強土壁工は、落石に対する衝撃吸収 性能に非常に優れた工法であることが確認されている.本工法につ いては、動的挙動を定量的に確認するため 1/2.5 モデル衝撃実験を 行い、衝撃荷重特性、破壊状況および補強効果などの結果を得てい る¹⁾. 今回は、この実験に対してその再現を試みるとともに、実験 では得られない挙動を確認することを目的に,動的 FEM 解析を行っ た.ここでは、その概要を述べる.

2. 実験概要

実験は, 重錘を振り子式に衝突させる方法で行った. 供試体は A~D の4タイプとし、各タイプについて漸増1ケース、単一載 荷2ケースの計3ケースで載荷した.供試体と載荷エネ ルギーの仕様を表-1に、Type-Dの供試体の断面形状

図-1 供試体形状図(Type-D)

を図-1に示す.ここで,供試体延長は7.2mである.

供試体	仕様	載荷エネルギー		
Type-A	無補強盛土堤体	2.3∼ 9.0kJ		
Type-B	補強盛土堤体	4.5 \sim 27.0kJ		
Type-C	受擊体+補強盛土堤体	13.5∼ 60.0kJ		
Type-D	受擊体+伝達体+補強盛土堤体	$30.0 \sim 120.0 \text{kJ}$		

供試休什样

3. 解析モデル

解析には汎用陽解法有限要素解析プログラム「LS-DYNA」を使用した. 図-2 に Type-D の解析モデルを, 表-2 に要素タイプを示す. ここで, 接合条件は各構造体間と土とジオグリッドの要素間には 1mm の間隙を 設けている. 表-3 に高圧三軸圧縮試験により得られた土の物性値を示す. 衝撃問題に適用する構成則は,静

的問題とは相違することからそ の妥当性を確認する必要があ る. 今回は, 本実験の解析に 先立ち,敷砂に重錘を自由落 下させた基礎的衝撃実験を行 い、その結果から土の物性値 の妥当性を確認した. 基礎的 衝撃実験は,幅 2.0m×2.0m で厚さ 1.0m の土槽に 5kN 重錘を高さ 5.0mから自由落下させ, 重錘加速 度などを測定した. 土は含水比お よび締固め度など本実験と同じ状 態としている. 図-3に土の体積

_ 1

図-2 解析モデル (Type-D)

主_	-3	+ /	π	州勿	州
- AV -	-0		"	17/1	IТ

値

構造体種別		要素種別		内部摩擦角	38.4°	
受擊体	袋材(繊維)	シェル		粘着力	2.0 kN/m^2	
	中詰材(砕石)	ソリッド		弾性係数	210000 kN/m^2	
伝達体	袋材(繊維)	シェル		せん断弾性係数	81000 kN/m ²	
	中詰材(土)	ソリッド		ポアソン比	0.3	
	補強材	シェル		単位体積重量	14.5 kN/m ³	
抵抗体	盛土材	ソリッド				
	壁面材	シェル				

ひずみ-応力関係を示す.破壊基準は Drucker-Prager の基準を適用し、土の降伏関数は(1)式の通りである. 表-4には土以外の使用材料の物性値を示す.ここで、土要素は引張、繊維要素は圧縮に影響を受けない非対

表--2 要素種別

キーワード 補強土壁, 落石, 衝撃, 動的解析

連絡先 〒950-0971 新潟市近江 155-5 アクシス近江 (㈱プロテックエンジニアリング TEL025-280-9981

$$\Box \Box \overline{C}, \quad p = \left(\frac{1}{3}\left(\sigma_x + \sigma_y + \sigma_z\right)\right) \quad J_2 = \frac{1}{2}S_{ij}S_{ij}$$
$$a_0 = k^2 \quad a_1 = 6\alpha k \quad a_2 = 9\alpha^2$$
$$\alpha = \frac{2\sin\phi}{\sqrt{3}(3-\sin\phi)} \quad k = \frac{6c\cos\phi}{\sqrt{3}(3-\sin\phi)}$$

表一	4	使用材料の物性	E1但
伝達体袋材		受墼休贷材	

	伝達体袋材		受擊体袋材		ジオグリッド	
	長さ方向	横断方向	長さ方向	横断方向	長さ方向	横断方向
断面積(m ² /m)	0.00022	0.00022	0.00184	0.00184	0.00021	0.00045
重量 (g/m ²)	122.7		1203.0		700.0	
等価厚さ(cm)	0.022	0.022	0.184	0.184	0.021	0.045
弹性係数(N/cm ²)	147000	149500	6159	6159	316900	9675

称型の材料特性とした. 図-4 に基礎的衝撃実験の重錘 衝撃力(加速度×質量)および重錘変位(加速度の積分 値)の経時変化を示す.実験値と解析値は近似し、土の 物性値および構成則は、本条件を適用することが妥当で あると判断できる. ここで, 粘着力を 2kN/m² および 10kN/m² とした場合の解析値と実験値を表す. この結果 より、土の粘着力による影響は見られず、以降の解析で は2kN/m²を使用することとした.

4. 解析結果

図-5 には、Type-D の重錘衝撃力の経時変化を示す. 解析値と実験値を比較すると,近似した挙動を示し,重 錘加速度に着目すれば本解析は実験を十分再現できてい ることがわかる.載荷エネルギーが大きく、また、材料 の混成が複雑になるほど実験値と解析値は相違する傾向 となるが、本構造の複雑性を考えれば、概ねその傾向は 捉えているものと思われる.なお,Type-D以外でも同様 であり、これらの傾向は各タイプに共通している.

5. まとめ

FEM 解析では、衝撃問題についてその現象を精度よく 表すことは非常に困難である.また、土にジオシンセテ ィックスを混成した補強土壁を対象にした FEM 解析につ いても同様であると思われる.このような状況の中で今 回の解析では、土の構成則を基礎的衝撃実験により確認 し、これを適用することにより概ねその現象を表現する ことが出来た. 今後は、内部応力などの実験では明確に できない現象を捉えて設計法に活用し、また、新たな補 強方法などを確認できるように検討を進めたいと考えて いる.

500

400 <u>S</u>

300

重錘衝撃力の経時変化(基礎的衝撃実験) 図-4

参考文献

1) 永吉他; 落石防護補強土壁のモデル衝撃実験結果の分析; 第37回地盤工学研究発表会; 地盤工学会; 2002.7