内部構造の変化を考慮した弾粘塑性構成式

京都大学大学院	フェロー会員	岡 二三生
京都大学大学院	学生会員	○ 木元小百合

1. はじめに

自然堆積土は長い年月をかけて、二次圧密や粒子間の固結(セメンテーション)などの作用を受ける。年代 効果と呼ばれるこのような作用を受け、堆積土の内部では微小な土粒子の集合体や、それを連結するリンク構 造が形成される。構造骨格を有する土の圧縮・せん断特性は、再構成試料と大きく異なる。例えば不攪乱の洪 積粘土はせん断時に非常に脆弱的な挙動を示し、ピーク強度を超えてせん断を継続すると、土の構造の変化に ともなって急激な強度低下を示す¹⁾。

以下では、せん断時のひずみ軟化挙動が、内部構造の破壊に起因するものとし、そのモデル化を試みる。ま た得られた構成式を洪積粘土に適用し、三軸応力状態でシミュレーションを行なった結果を示す。

2. 弾粘塑性構成式

過圧密境界面…正規圧密領域 $f_b \ge 0$ 、過圧密領域 $f_b < 0$ の境界面は、次の関数で表現する。

ここに σ'_m は平均有効応力、 S_{ij} は偏差応力テンソル、 M^*_m は変相応力比で粘塑性体積ひずみ増分が圧縮から 膨張へ変化する時の応力比の値で定義される。 $\eta^*_{ij(0)}$ は異方圧密後の応力比である。

粘塑性ひずみ速度の発展則

 $\dot{\varepsilon}_{ij}^{vp} = C_{ijkl} \left\langle \Phi_1\left(f_y\right) \right\rangle \frac{\partial f_p}{\partial \sigma'_{kl}} \tag{3}$

 $C_{ijkl} = a\delta_{ij}\delta_{kl} + b(\delta_{kl}\delta_{jl} + \delta_{il}\delta_{jk}), \ C_{01} = 2b, \ C_{02} = 3a + 2b \quad \dots \quad \dots \quad \dots \quad \dots \quad (4)$

静的降伏関数・・・静的降伏関数は、以下の式で与える。

 σ'_{myi} は本来、初期の静的降伏関数の大きさを表す定数であるが、 C_{01}, C_{02} に含めるものとする。一般に x^*_{ij}, y^*_m は移動硬化パラメータであるが、今回 $x^*_{ij} = \eta^*_{ij(0)} = 0$ とした。 y^*_m の硬化則は、

塑性ポテンシャル関数・・塑性ポテンシャル関数は以下の式によって表現する。

正規圧密領域では $\tilde{M}^* = M_m^*$ 、過圧密領域では $\tilde{M}^* = -\frac{\sqrt{\eta_{ij}^* \eta_{ij}^*}}{\ln(\sigma'_m/\sigma'_{mc})}, \sigma'_{mc} = \sigma'_{mb} \exp \frac{P_{\overline{\eta_{ij}^* (0)} \eta_{ij}^* (0)}}{M_m^*}$ とする。ただし過圧密領域にあっても、一旦 $\tilde{M}^* = M_m^*$ に達した後は $\tilde{M}^* = M_m^*$ とする。

ここでGはせん断弾性係数、 \dot{S}_{ij} は偏差応力速度テンソルである。

キーワード:構成式,粘性土,三軸試験,構造,ひずみ軟化

^{〒 606-8501} 京都市左京区吉田本町/Tel 075-753-5085/ Fax 075-753-5086

3. 内部構造変化の定式化

従来、静的降伏関数 (3) 式中の σ'_{ma} を定数と していたが、これを粘塑性ひずみの増加に従い 減少させることで、内部構造の破壊の表現とす る。 σ'_{ma} の減少は静的降伏関数の大きさを縮小 させることに対応する。初期値を σ'_{mai} 、残留応 力状態での収束値を σ'_{maf} として、

 $\sigma'_{ma} = \sigma'_{maf} + (\sigma'_{mai} - \sigma'_{maf}) \cdot exp(\beta z)$ (10) ここで、 σ'_{ma} を減少させると、式 (7) によって 粘塑性ひずみが増大し、ひずみ軟化が表現され る。 β は構造の破壊速度に関する材料定数であ る。図-1 にパラメータ σ'_{maf} を変えた場合の、 正規圧密領域での非排水三軸試験の計算結果を 示す。初期値 σ'_{mai} はすべて 580(kPa)としてい る。他のパラメータは表-1のOCR=1.0 に示す とおりである。 σ'_{maf} が小さいほど、残留時の 軸差応力が小さくなり、軟化の度合いを決定す るパラメータであることが分かる。

4. 上部大阪洪積粘土への適用

図-2 に鶴見洪積粘土 (等方圧密降伏応力: 580kPa)を用いた、ひずみ速度 0.005%/min.、 過圧密比 1.0, 2.0, 5.9 における非排水三軸試験 結果を示す¹⁾。どの過圧密比においても明確な ピーク点がみられ、典型的なひずみ軟化挙動を 示している。これについて本構成式を用いてシ ミュレーションした結果を図-3 に示す。解析パ ラメータは表-1 のとおりである。いずれもピー

ク点を過ぎた後の強度低下を再現している。過圧密領域においては、粘塑性膨張をともなう軸差応力の低下を 表現する。変相応力線より上では $\dot{\epsilon}_{kk}^{vp} < 0$ つまり粘塑性膨張となるので、OCR=2.0 については実験結果にみ られるピーク直後の有効応力の減少を表現できていない。

表―1 解析バラメータ					
	OCR=5.9	OCR=2.0	OCR=1.0		
初期平均有効応力 σ'_{mai} (kPa)	98	294	580		
せん断弾性係数 G_0 (kPa)	31600	31600	31600		
E $har Lagrange L$	0.508	0.508	0.508		
	0.0261	0.0261	0.0261		
初期間隙比 e ₀	1.70	1.70	1.70		
圧密降伏応力 σ'_{mbi} (kPa)	580	580	580		
	1.09	1.09	1.09		
	1.09	1.09	1.09		
	18.5	18.5	18.5		
" C ₀₁ (1/s)	1.0×10^{-10}	4.0×10^{-13}	1.3×10^{-13}		
" C ₀₂ (1/s)	1.4×10^{-10}	4.0×10^{-13}	3.3×10^{-13}		
構造の変化に関するパラメータ σ'_{mai} (kPa)	580	580	580		
" σ'_{maf} (kPa)	370	290	300		
<u> </u>	40	45	20		

参考文献

1) 八嶋厚・重松宏明・岡二三生・長屋淳一:上部大阪洪積粘土の力学特性と構造変化,土木学会論文集, No. 624/ -47, pp. 217-229, 1999.

 Adachi, T., Oka, F. and Mimura, M. : An elasto - viscoplastic theory for clay failure, Proc. 8th Asian Regional Conference on SMFE, Vol. 1, pp.5-8, 1987.