ケーブルボルトによる地下空洞岩盤の先行補強に関する現場実験~数値解析による評価~

山口大学大学院 学 山口大学工学部 正 電源開発 正 大成建設 正 岩崎 進一郎 学 深光 良介 清水 則一 学 星野 貴史 柏柳 正之 正 鳥羽瀬 孝臣 伊藤 文雄

不連続面

α

B

1. はじめに

地下発電所や石油地下備蓄施設など では,地下岩盤内に大断面の空洞が建 設され,岩盤不良部では空洞掘削後に 発生する岩盤の変状に対して,事後に 施される支保工や補強工の負担が極め て大きくなる.掘削後の支保の負担を 軽減し,建設コストの縮減を目指し, 筆者らは,全面接着型のケーブルボル ト工法¹⁾に着目し,ケーブルボルトに よる岩盤の先行補強に関する現場実験 を行った²⁾⁻⁵⁾.本報告では,数値解析 を用いて実験結果を評価する.

写真1 実験を行った地下空洞

2. 地下空洞における数値シミュレーション

まず,現場実験を行った地下空洞を個別要素法⁶⁾を用いてモデル化し, 現場実験と同じ変位が再現される力学パラメータを推定する⁷⁾.そして, そのパラメータを入力して,ケーブルボルトが打設されない場合の岩盤の 挙動を数値解析によって求め,ケーブルボルトを打設した場合と比較する. 2.1 岩盤変位の比較

空洞掘削解析では,実験現場で実際に行われた掘削手順に基づいて, 盤下げLiftを考慮した逐次掘削を行う.図1に解析モデルを, 表1に解析パラメータを示す.空洞の大きさは,高さ40m× 20 幅20mである.図に示す不連続面は,ボアホールテレビにお 售15 いて確認された顕著な不連続面 , , を表している⁵⁰.図 2にケーブルボルトを打設したD断面において,設置した地 凝10 中変位計L-2の岩盤変位の現場計測変位を示す(図中).図 2には、シミュレーションによって再現した変位を示してい 0 -る(図中).解析値と計測値は、よい一致を示している.ま た、同図には、ケーブルボルトを打設しなかったと仮定して、 12 数値解析によって得た変位を併わせて示している(図中). 10 図2よりケーブルボルトを打設した場合と打設していない場 8 合とでは,内空壁面から約2.5mの範囲で変位に大きな差が 6 del 位 4-出ている.これは,卓越した不連続面 による影響であると 2 -考えられ,ケーブルボルトは,不連続面の挙動を抑制して 0 -いることが分かる.また,計測線15Eについてもケーブルボ ルトを施工した場合と、しない場合に対して岩盤変位を比較

キーワード:ケーブルボルト,先行補強効果,地下空洞,現場実験,数値解析 連絡先:〒755-8611山口県宇部市常盤台 2-16-1 山口大学大学院理工学研究科社会建設工学専攻 岩崎 進一郎 TEL 0836(85)9334 e-mail:iwasaki@rock.civil.yamaguchi-u.ac.jp する(図3).図3より計測線15Eでは,内空壁面から約3.5mの 範囲で両変位に大きな差がみられる.これは,不連続面 による 影響と考えられ,ケーブルボルトが不連続面 の挙動を抑制して いるといえる.以上のことから,計測線L-2,および15Eともに ケーブルボルトによる岩盤変位の抑制効果が示された. 2.2 応力経路とケーブルボルト軸力の評価

不連続面とケーブルボルトの交点の最も地下空洞壁面側を a 点,空洞壁面から最も深部の点を b 点として(図1参照),不連 続面上の垂直応力,せん断応力,およびせん断変位を求め,ケー ブルボルトを打設した場合と打設していない場合の比較を行う.

まず,図4および図5に不連続面a点およびb点における応力 経路を示す.a点では,ケーブルボルトを打設した場合は,応力 は一旦,破壊線には達するものの,ケーブルボルトを打設しない 場合に比べ垂直応力,およびせん断応力の低下が抑制されてい る.一方,b点においては,両者の差は,それほどみられない. また,図6および図7に示したa点およびb点に対するせん断変 位と垂直応力の関係においては,盤下げが進むにつれ,せん断変 位にケーブルボルトを打設した場合と打設していない場合で大き な差が出ている。特に空洞壁面に近いa点ではケーブルボルトを 施工することによってせん断変位が約10mm 抑制されている. また,図8および図9にa点およびb点に対するケーブルボルト 軸力と不連続面上の垂直応力との関係をそれぞれ示す.a点にお いては、不連続面上の垂直応力はケーブルボルトの軸力が増加す ることによって、ケーブルボルトを打設しない場合の最終垂直応 力より大きい値となっている.すなわち,ケーブルボルトによっ て,不連続面上の垂直応力が増加し,それが摩擦抵抗の増加に結 びつくことが分かる.

以上のことより、ケーブルボルトによる先行補強は地下空洞周 辺岩盤の動きを拘束し、ゆるみ領域の発生を抑制する効果がある と考えられる.

3. まとめ

本実験においては、ケーブルボルトによる先行補強の効果は空 洞壁面付近で顕著に現れ、そのことが岩盤のゆるみを抑制し、地 下空洞掘削時の岩盤の安定性の向上が図れたものと考えられる。 今後は 岩盤のゆるみの抑制効果に対する定量的評価が課題である。

参考文献

- 1) 清水則一:ケーブルボルト工法による地下空洞岩盤の先行補強,電力土木, No.275, pp.1-7, 1998.
- 2) 清水則一,柏柳正之,鳥羽瀬孝臣,伊藤文雄:ケーブルボルトによる地下空洞の先行補強に関する現場実験について,第31回岩盤力学に関するシンポジウム 講演論文集,pp.206-210,2001.
- 3) 岩崎進一郎,深光良介,清水則一,柏柳正之,鳥羽瀬孝臣,伊藤文雄:地下空 洞におけるケーブルボルトによる岩盤の先行補強に関する現場実験,第53回土 木学会中国支部研究発表会概要集,pp315-316,2001.
- 4) 深光良介,岩崎進一郎,清水則一,柏柳正之,鳥羽瀬孝臣,伊藤文雄:地下空洞のケーブルボルトによる先行補強に関する現場実験,第 56回土木学会年次学術講演会講演概要集,pp.88-89,2001.
- 5) 柏柳正之,棚瀬大爾,原田円,清水則一,伊藤文雄:先行補強した大規模地下空洞の掘削時亀裂挙動について,第22回西日本岩盤工学シンポジウム論文集,pp.41-45,2001.
- 6) ITASCA Consulting Group : UDEC , Version3.0 , Users Manual
- 7) 深光良介:ケーブルボルトによる地下空洞岩盤の先行補強に関する現場実験と結果の評価,山口大学大学院理工学研究科修士論文,2002.3.

