円筒凍土

Pzu

片側凍土厚

円筒

中心

円筒内

凍結面 未凍結土

円筒凍土

圧抜き管解析モデル(縦断面)

円筒凍土

圧抜き管解析モデル(横断面)

構

造

圽

接続凍結工における圧抜き管の凍結土圧軽減効果

(株)精研	○正会員	上田保司
(株)精研	正会員	松岡啓次
(株)精研	正会員	生頼孝博

凍

結

管

圧

一抜き管

結管

図 1

圧抜き管

有効円

(直径de)

図2

凍結管列

構

造物

<u>1. 緒言</u> 既設洞道間の接続などに凍結工法を用いる場合,凍土内部で閉塞状態にある未凍結土を介して 既設構造物に作用する凍結土圧を軽減するために圧抜き管が設置される.圧抜き管の最適配置方法の確立を 目的に,先行研究の凍結土圧解析手法¹⁾を用いたモデル解析から圧抜き管による凍結土圧軽減効果を調べた.

2. 解析手法 図1に示すように凍結膨張に伴う半径方向の凍結土 圧 Pr が円筒内部の未凍結土に発生すると、未凍結土は軸方向に伸長し ようとして構造物との接触面に凍結土圧 Pzu が作用する. 圧抜き管が 存在すると、未凍結土が管から圧密排水されて凍結土圧は軽減される. 土の三軸凍上特性²⁾に基づく各方向への凍結線膨張率、構造物の力学 変形、未凍結土の圧密を連立した凍結土圧解析法¹⁾を用いて図2のモ デルで凍土成長に伴う Pzu の経時変化を解析し、加えて圧密排水無し の解析結果と比較した. 硬質及び軟弱地盤を想定して洪積及び沖積シ ルトの諸数値²⁾を用い、凍結体積膨張率を3%として三軸凍上特性から 凍結線膨張率を求めた. 構造物の力学特性は先行研究¹⁾と同じである. 未凍結土の圧密収縮は軸方向に生じず、半径方向にのみ生じるとした.

圧密を考慮する場合は図2に示すように凍結面との距離を半径とす る圧抜き管周囲の有効円が Pr によって圧密されるとした.以降は有効 円の直径を de とし、管と円筒中心との芯ずれ距離をrとする. Pr が一 定であっても圧密量は時間に依存するが、本モデルではさらに凍土成 長に伴って Pr も増加するので、図3に示すように微少時間($\Delta t=t_j-t_{j-1}$) に発生した土圧(ΔPr_j)が圧密期間(t_i-t_j)にもたらす圧密量を累積して所 定の時刻(t_i)での有効円の半径収縮量(Δde_i)を求めた.ただし圧密は半 径方向の有効応力 Pr₀+Pr が圧密降伏応力 Py を超える場合に生じる. Pr₀は凍結前の初期有効応力である.以上を式で表すと、

$$\Delta \operatorname{de}_{i} = \sum_{j=2}^{i-1} \left\{ U(\mathbf{T}_{j}) \mathbf{m}_{\mathbf{v}} \Delta \operatorname{Pr}_{j} \right\}$$
(1)

 m_v , C_v は体積圧縮係数及び圧密係数である. U(T_j), T_j は圧密度及び時間係数で, サンド ドレーン工法などで用いられる Barron の 円筒圧密理論に基づく時間係数-圧密度曲 線³⁾からU(T_j)を求めた. 圧抜き管の配置と して図4に示す1~4本の場合を扱い, 2 ~4本配置では各管の有効円の重なる部分 の圧密を2重に計算しないようにした. ま た図5に例を示すように3本及び4本配置

凍土,凍結膨張,凍結土圧,圧密

 $T_{j} = \frac{C_{v}(t_{i} - t_{j})}{de_{j}^{2}} \quad (2)$

〒542-0066 大阪市中央区瓦屋町2丁目11番16号(株)精研 TEL:06-6768-5031

FAX:06-6768-1508

では、正三角形及び正方形領域の内側の de をサンドドレーン工法と同様に それぞれ 1.05d, 1.13d とした³⁾. ここで d は圧抜き管の設置間隔である.

3. 解析結果 まず図4の各配置でrを1.0mで同一として解析した. 凍土 は最初各凍結管の周囲に造成され,未凍結土の変形が各凍結管の間に逃げて Pzuが発生しないので,各円柱凍土が繋がって円筒凍土が完成(閉塞)する凍 結日数11日目以降を解析の対象とした.実施工では圧抜き管を介して計測 される未凍結土の間隙水圧の上昇から凍土の閉塞が確認される.図6の硬質 地盤では20日目以前で各配置のPzuに差は無く,排水無しの場合との差も 無い.これは前述のようにPr0+PriがPyを超えず圧密が生じないためである.

20日目以降は圧抜き管の本数が多いほど早期に排水無しの場合の Pzu を 下回る. 凍結管列からの片側凍土厚が 1.0m に達する 43 日目では設置本 数が多いほど Pzu は小さく、1本及び2本配置の Pzu は排水無しの場合 の80~90%程度であるが、3本配置では63%、4本配置では43%と急に 小さくなる. 凍結土圧軽減が十分でない場合は圧抜き管の本数を増やす と有効である.なお、実施工では凍土閉塞後に未凍結土を直接抜き取る 方法もある.図7の軟弱地盤では凍土閉塞後すぐに圧密が生じて各配置 の Pzu は排水無しの Pzu を下回り, 硬質地盤の場合と同様, 設置本数が 多いほど排水無しとの差が大きい. 43 日目では1本配置でも Pzu が排水 無しの場合の54%と小さく、硬質地盤と異なり1本の設置でも十分な凍 結土圧軽減効果を得ることができる. 2~4本配置の Pzu は排水無しの 43%, 25%, 22%であり, 圧抜き管の設置本数が同じであれば軟弱地盤 での軽減効果は硬質地盤よりも大きい.次に圧抜き管の複数本設置時に 設置間隔が施工限界に近くなる r=0.5m から, 片側凍土厚 1.0m での凍結 面の位置 r=2.5m までの範囲で r を変化させて Pzu を解析した. 図8及び 図9に示すように硬質・軟弱地盤ともrが0.5mから増加するにつれて Pzu は減少するが、1.5m よりも大きい領域では逆に r の増加に伴い Pzu は増加する. r が増加して有効円の直径 de が小さくなると圧密の進行は 早くなるが、同時に有効円の面積が減少するので圧密量は低減する. r に対する Pzu の増加・減少はこの2つの理由でおこる. また r=1.0~ 1.5m の範囲で Pzu はほぼ最小に近く r による変化も小さい. つまりこの 範囲に圧抜き管を設置すれば十分な凍結土圧軽減効果が得られ、孔曲が

り等の施工誤差の影響も少なくできる. <u>4. 結言</u> 接続工における圧抜き 管の凍結土圧軽減効果の設置本数及 び硬軟質地盤による違いを定量的に 確認できた.また,十分な凍結土圧 軽減効果が得られ施工誤差の影響も 少なくできる圧抜き管の設置範囲が 得られた.<u>文献</u>1)上田他(2000):土木 講演集, III-B352.2)山本他(1994),雪 氷,Vol.56,No.4,325-333.3)千田昌平: 軟弱地盤改良工法, 鹿島出版会.

