海底地形による内部波の発生と鉛直混合に関する数値シミュレーション

1. 目的

成層した海洋における鉛直混合は水平方向の混合に比べ著しく小さく、物質循環を考える上で重要な要素となる。 また、海底に人工構造物を設置することにより鉛直混合を促進させる方策も種々提案されている。ところが、これ までは密度成層による効果について十分に議論されてきたとは言い難い面がある¹⁾。ここでは天然または人工の海 底起伏による流動変化をいくつかの成層条件のもとで計算し、成層条件の違いによる鉛直混合効果の変化をみるこ とを目的とした。

2. 方法

混合効果を考える場合、乱流現象の再現が重要となる。また、成層条件によっては間欠的に発生する大規模な上 昇渦もみられ、非定常的な計算が必要となる。そこで、下に示す Smagorinsky モデルにもとづいたLES 基礎式を 用いた。

$\frac{\partial u_i}{\partial x_i} = 0$ $\frac{\partial \overline{u}}{\partial \overline{u}} = \frac{\partial \overline{u}}{\partial \overline{u}} = $	$\tau_{ij} = \frac{1}{2} \delta_{ij} \tau_{kh} - 2 \nu_{SGS} \overline{S}_{ij}$	$S_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$
$\frac{\partial u_i}{\partial t} + \overline{u}_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial u_i}{\partial x_j \partial x_j} - \frac{\partial v_j}{\partial x_j} - \beta(\overline{T} - T_0)g_i$	$v_{SGS} = (C_S \Delta)^2 \left \overline{S} \right $	$\left \overline{S}\right = (2S_{ij}S_{ij})^{\frac{1}{2}}$
$\frac{\partial \overline{T}_i}{\partial t} + \frac{\partial \overline{u}_j \overline{T}}{\partial x_j} = -\frac{\partial h_j}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\alpha \frac{\partial \overline{T}}{\partial x_j} \right)$	$\Delta = (h_x h_y h_z)^{\frac{1}{3}}$	$h_{j} = \frac{v_{SGS}}{\Pr_{SGS}} \frac{\partial \overline{T}}{\partial x_{j}}$

ここで、uは流速、pは圧力、Tは水温、 β は体積膨張係数、Reはレイノルズ数である。

成層条件下での鉛直混合は微小であると考えられるため、数値混合による誤差をできる限り小さくするために、 離散化の方法として直交座標系の差分法を用い、移流項にはCIP法を適用した。

3. 計算ケース

フラットな海底面に存在するベルマウス型の断面形を持った細長い突起地形に 対し、長手方向直角に水平流が存在する場合について考えた。突起地形の形状は図 1に示す高さ13.3m、頂部延長120mの形状(形状1)およびこれに相似形で1/2 規模とした形状(形状2)とした。また、鉛直方向の密度分布形として図2に示す 4つのパターンを考え、それぞれについて海面から海底までの密度差を密度平均で 除した値を成層強度として設定した。水深は80mとした。

計算格子数は流下方向 115、幅方向 61、水深方向 120 であり、最小格子幅は水平 方向が 2.5m、鉛直方向が 0.66mである。

4. 結果

図 3~図 6 に突起地形中央を横切る流軸に沿った鉛直断面上の正規化密度、流下 方向水平流速、鉛直流速分布を示す。図 3 および図 4 は密度勾配が一定の場合であ るが、地形性の内部波(lee waves)が発生している。このときの内部波の波長は線 形理論によると $\lambda = 2\pi U/N$ (U は流速、N は浮力振動数)であり、この条件で は約 100mとなる。これはおよそ計算で得られた波長と一致するが、水深が波長に 比較し浅いことや突起地形が水深に比較し無視できない規模であり、下流側の流速 分布も一様でなくなることから波形が変形している。図 5 は完全な 2 層構造となっ ている場合である。下層では突起地形により間欠的に発生する上昇渦がみられ、こ

キーワード 内部波,鉛直混合

連絡先 〒107-0061 東京都港区北青山 2-5-8 (株) ジオスケープ TEL03-5410-2366

れが躍層境界まで達し、境界をあいまいにしている。しかし混合層内への影響は小さい。図6は夏季の海域でよく 見られる密度分布形であり、混合層では均一であるが、その下部に躍層が存在し、さらに下層にむかうにしたがっ て密度が高くなる。このような場合にも内部波が発生し、それが混合層まで伝播し、躍層を緩やかにするとともに、 混合層内の流速も大きく変化しており、鉛直方向の物質循環にも大きな影響を与えるものと考えられる。図7は流 線を示したものである。密度分布Bでは躍層下面に大きな乱れが見られる。他のケースでは発生した内部波が条件 により様々に変形していることがわかる。成層強度が大きいほど鉛直混合も小さいと考えられるが、一方で内部波 の勾配は大きくなるとともに流速シアーも大きくなることから、それによる乱れの発生も期待できる。また、突起 地形下流側で中層部に水平流速の小さな領域があり、これは魚群の礁への定位とも関係すると推察される。

成層条件により鉛直混合の形態が異なることが確認されたが、今後は地形形状と鉛直混合の関係性の調査および 定量化を図って生きたい。

参考文献 本田ら、マウンドによる湧昇効果に関する数値シミュレーション、平成14年度日本水産工学会学術講演会