正会員

平原伸幸

設計ツールの高度化に対応した道路橋の設計に関する研究

独立行政法人 土木研究所

<u>1.はじめに</u>初等はり理論に基づいた格子解析な ど従来の設計手法は、計算機が普及していなかった時 代から合理的な手段として用いられている。しかし、 近年の計算機の飛躍的な性能向上により設計ツール が高度化された現在では、より精度の高い設計手法の 実現が可能であり、これまでも様々な方面での研究が 報告¹⁾⁻⁵⁾されているものの、設計ツールとして本格的 に用いられているとは必ずしもいえない。

このような背景のもと、本研究では立体 FEM 解析 を用いた鋼道路橋の傾向を把握し、設計段階での問題 点を整理することを目的とした。

2.対象橋梁 図-1 に対象とした橋梁一般図を示す。
橋種は、橋長 102.5m、幅員 11.6m の 3 径間連続非合成鈑桁橋(桁高 1.9m、間隔 2.4m、床版厚 230mm)で、
支間中央に荷重分配横桁、橋軸方向に 5.7m 間隔で中間対傾構、下横構が配置される鈑桁橋である。
3.解析手法 図-2 に有限要素分割図を、表-1 に各解析ケース(Case1,2,3)で使用した要素を示す。

モデルに汎用性をもたせるため、特殊な要素の使用 は避け、4節点シェル要素と梁要素のみとした。主桁 と床版は梁要素で結合させ、実橋の非合成桁がもつフ レキシビリティーを考慮した剛性⁶⁰を使用した。

図-3 に荷重載荷パターンを示す。活荷重は道路橋示 方書の B 活荷重とした。P₁、P₂荷重が共に着目部材に 最も不利となる位置(ここでは TYPE-A, TYPE-B, TYPE-C の 3 箇所)を格子解析より決定して載荷した。

なお、格子解析との比較を想定したため、荷重抵抗 係数設計法などの概念は今回は導入していない。汎用 解析コードは MSC/NASTRAN を使用した。

<u>4.解析結果と考察</u> 図-4 に G1 桁に着目した各モ デルの応力、変形量の分布図を、表-2 に各桁に着目し た解析結果の数値比較を示す。評価の対象は主桁のみ とした。

応力の算出に際しては、可能な要素に関しては応力 成分の組合せ結果である Von Mises の相当応力を用い

-		化-1 区用女杀 見仪						
	、解析ケース	簡易要素	\longleftrightarrow	: 詳細要素				
部材名称		CASE 1	CASE 2	CASE 3				
庄版	床版							
	地覆							
	ウェブ	_						
±#7	フランジ	-	-					
±11J	垂直補剛材		-	-				
	水平補剛材		-	-				
带标	ウェブ							
192111	フランジ		-					
	端支材							
☆価構	端対傾構							
AT MILE	中間支材							
	中間対傾構							
下横構								
<u>スラブ アンカ</u>	1-(結合要素)							
節点数		2332	5186	10652				
要素数	(主桁のみ)	4369 (660)	10491 (6774)	14475 (10758)				
凡例) :シェル要素 :梁要素(全剛性考慮)								
□ :オフセット梁要素 2梁要素(軸力のみ考慮)								
空欄はモ	デル化してい	ない要素を示す						

キーワード 鋼多主桁橋,設計手法,FEM解析,格子解析 構造物研究グループ(橋梁構造)〒305-8516 茨城県つくば市南原1番地6 TEL 0298-79-6793 FAX 0298-79-6739 たが、断面力として解を得る要素では、従来同様に応 力換算する手法を用いた。

格子解析との比較では、最も簡易な有限要素(主桁 断面が一つの梁要素)を用いた Case1 においても、応 力においては概ね30%程度の低減効果が見られ、変形 量においても同様の傾向となった。さらに、Case2か ら Case3 へと要素を高次化するに従い、減少傾向がみ られた。各ケースを比較すると、Case1 に対してウェ ブをシェル要素とした Case2 は、6%程度の応力低下が 見られたが、Case2 に対してフランジをシェル要素と した Case3 は変形量に影響は見られるものの、応力に 関しては、ほとんど低下は見られなかった。

なお、最も詳細な有限要素を使用した Case3 は、現 状ではモデル作成段階における解析者の自由裁量に 依存するところが多く、またその違いが解析結果に及 ぼす影響も無視できないため、今後さらなる検討が必 要である。

5.おわりに 以上より、鋼上部工全体系に立体 FEM 解析を用いることで、生じる問題点について一部整理 することができた。今後は、本解析モデルを基にさら なる検討を行い、設計ツールの高度化に対応した設計 手法の確立に結び付けたい。

【参考文献】

- 1) 西川・中谷・小野・中洲: 超高性能ゲーム機時代の橋梁設 計, 土木技術資料, 43-1, pp.50-55, 2001
- 2) 菅沼・小西・三木: FEM と最適化ソフトの組合せによる鋼 橋最小重量化設計の試み,応用力学論文集,Vol.3, pp.225-233, 2000
- 3) 鋼上部構造の設計に FEM 解析を適用するためのガイドラ イン(案),本州四国道路橋公団,1993
- 4) 鋼構造新技術小委員会: ロングライフブリッジへの道,橋 梁と基礎, 1997.7~10
- 5) 鋼構造新技術小委員会:最終報告書(設計法研究),土木 学会, 平成8年
- 6) 小松・佐々木:不完全合成格子桁橋の理論と近似解法につ いて, 土木学会論文集, 第329号, pp27-37, 1983.1

TYPE-B:	G1桁	P2中間支点部	負	曲げモー	->	い	小最	け	、載荷
				21.000		10	000		21.0

				-			
Q	<u>۳</u> (۴	\sum				Ē	³ P4
		5 500	200				G1
		2 150	0				
	33 850 M	max			55 000		33 850

TYPE-C: G1桁 P2-P3中央径間中央部 曲げモーメント最大載荷

P1	P2	Mmax	21 000 P3	D	(P4	
	160 5 500	2			G1 62 63	
33 850		55 000		33 850	65	
図-3 荷重載荷パターン図						

叉-4

CASE 3

中間支点上(TYPE-B) 中央径間中央(TYPE-C) 主桁分布図(G1桁)

			表-2
載荷タイプ	G14	行 上フラン	ンジ
解析ケース	TYPE-A	TYPE-B	TYPE-C
格子解析	-204	203	-202
CASE 1	-152 75%	168 83%	-135 67%
CASE 2	-133 65%	143 70%	-124 61%
CASE 3	-121 60%	144 71%	-119 59%

載荷タイプ	G1	ンジ	
解析ケース	TYPE-A	TYPE-B	TYPE-C
格子解析	200	-149	167
CASE 1	152 76%	-140 94%	135 81%
CASE 2	132 66%	-144 97%	97 58%
CASE 3	122 61%	-112 75%	98 59%

着目最大応力比較表(単位:MPa) 解析結果

載荷タイプ	<u>G2桁 上フランジ</u>						
解析ケース	TYPE-A	TYPE-B	TYPE-C				
格子解析	-203	203	-198				
CASE 1	-135 67%	150 74%	-115 58%				
CASE 2	-133 66%	146 72%	-121 61%				
CASE 3	-97 48%	139 68%	-135 68%				

載荷タイプ	G2桁 下フランジ							
解析ケース	TYPE-A	TYPE-B	TYPE-C					
格子解析	185	-131	131					
CASE 1	135 73%	-120 92%	115 87%					
CASE 2	125 68%	-127 97%	99 76%					
CASE 3	120 65%	-107 81%	100 77%					

載荷タイフ G3桁 上フラ TYPE-A 解析ケース TYPE-B TYPE-0 格子解析 -203 204 -176 CASE 1 -135 67% 163 80% -114 65% CASE 2 -13265% 149 73% -123 70% 56% CASE 3 -114 170 83% -67 38% 載荷タイフ 下フラ G3桁 TYPE-A TYPE-B TYPE-C 解析ケース 格子解析 179 -137 137 135 76% -131 96% 114 83% CASE 1 109 79% 128 72% -134 98% CASE 2

注)表中の百分率は格子解析との比較を示す

-109 80%

101 74%

121 68%