交番載荷を受けるコンクリート充填鋼管を用いた多柱式合成橋脚の構造特性

第一復建株式会社	正会員(つ 李	重桓
九州大学大学院		片渕	和啓
九州大学大学院	正会員	日野	伸一
九州大学大学院	フェロー	太田	俊昭

1. はじめに

兵庫県南部地震後,土木構造物は大きな地震動を受けても崩壊しないことが強く要求されるようになり,そ のための構造と技術が開発されるようになった.また,技術基準も大幅に強化改訂されることになり,許容応 力度設計から地震時保有水平耐力法による設計へ移行され,さらに,現在の道路橋示方書は性能型設計を導入 している.この研究では,高橋脚を対象として,自重の軽減とじん性の向上を図ることによって,優れた耐震 性を保有する,コンクリート充填鋼管を用いた多柱式合成橋脚を提案し,その力学特性について解析的な検討 を試みてきた.本論文では,多柱式合成橋脚の耐荷力および変形性能を実験によって検討するとともに,ファ

イバーモデルを用いた弾塑性解析によって実験結果の妥当 性について検討を行ったものである.

2. 多柱式合成橋脚の載荷実験

図-1に供試体の正面図と側面図を,図-2に断面図を示 す. 寸法決定にあたっては、これまで検討してきた 50m 橋 脚を対象とし、1/20 のスケールを基本とした. なお、スケ ール調整が困難であったものについては、解析によって多 柱式合成橋脚特有の破壊過程を表現できるような寸法調整 を行った. 主部材と補剛材の材質は STK490、全充填した コンクリートの強度は 25N/mm²である.

載荷は、一定の軸力を載荷した後、その軸力を保持した状態で、供試体頂部の載荷点に水平変位制御による正負の繰返し載荷を行った。鉛直方向は荷重制御で 200kN まで、水平方向は基本変位(δ_0)を 20mm とする変位制御で、その整数倍の変位量を片振幅とした両振りの繰り返し載荷($\pm 1 \delta_0$, $\pm 2 \delta_0$, $\pm 3 \delta_0$, ……)とした。

3. 実験結果および考察

(1)主部材の合成効果

鉛直および水平の載荷時における鋼管のひずみ分布を求めて,主部材が合成構造として挙動しているかどうを調べた.表-1に $1\delta_0$ ~ $4\delta_0$ での主部材の縦方向(高さ方向)および横方向(幅方向)のひずみ量を,図-3には $+4\delta_0$ 時のひずみ分布を示す.表-1からわかるように,圧縮側と引張側の挙動が異なっている.圧縮主部材の縦および横のひずみ関係は,一般的なポアソン比より大きくなっているが,引張主部材は逆に小さくなる結果となった.これにより,コ

図-1 供試体の正面図および側面図(単位:mm)

キーワード:コンクリート充填鋼管, 交番載荷, 合成効果, 吸収エネルギー量, 破壊過程, ファイバーモデル 連絡先 *:〒812-0016 福岡市博多区博多駅南 3 丁目 5-28 Tel:092-431-9181 Fax:092-461-2293

	圧縮主部材			引張主部材		
	縦方向	横方向	横/縦	縦方向	横方向	横/縦
$1 \delta_0$	-1571	566	0.36	1650	-117	0.07
$2 \delta_0$	-4649	1920	0.41	3016	-601	0.20
$3 \delta_0$	-13034	6779	0.52	14400	-3117	0.22
$4 \delta_0$	-24021	12446	0.52	25295	-5095	0.20

表-1 各サイクル最大時でのひずみ

ンクリートを充填することは,耐荷力の向上はもちろん, 引張力によって鋼管の断面が変形することを抑制する効果 が確認された.

(2)包絡線およびエネルギー吸収量

図-4 に水平荷重および水平変位の履歴曲線の最大点を 結んだ包絡線を示す.解析は,全体モデルを2次元骨組構 造とした弾塑性解析であり,すべて要素をファイバーでモ デル化した.復元力特性は移動硬化則とし,材料非線形特 性は道路橋示方書の規定に準拠した.負方向の最大耐力以 降の剛性を除けば,解析値は精度よく実験値を評価する結 果となった.最大荷重以降の剛性の違いは,最初に載荷を 行う方向に起因するものと考えられる.最初の載荷方向は 正方向であったので,その方向に対する主部材の降伏が先 行し,交番載荷のサイクルが大きくなるに従ってその影響 が徐々に現れる結果となったものと考えられる.

各サイクル時のエネルギー吸収量を図-5 に示す. エネ ルギー吸収量は、サイクルが大きくなるに応じて比例的に 大きくなっていることから高い変形性能によるエネルギー 吸収性能に優れていることがわかる. 解析との比較は大き いサイクルで実験値との差が見られる. この原因は解析モ デルの復元力特性の影響であり、とくに徐荷時の剛性評価 が起因したものと考えられる.

(3)破壞過程

最初の降伏は,正方向載荷時に圧縮となる主部材であり, そのときの荷重および変位はそれぞれ 54.9kN および

16.7mm であった.その直後に引張主部材が降伏し,1 δ_0 の載荷で両側の主部材基部が降伏する結果となった. その後,主部材の降伏が高さ方向へ徐々に進行している.+3 δ_0 で補剛材が降伏しはじまり,+5 δ_0 で補剛材 の座屈が見られる結果となった.最終的な破壊は,引張主部材の破断と圧縮主部材の座屈によるものであった.

4. まとめ

本実験および解析により,多柱式合成橋脚の特有の破壊過程である,主部材が降伏したのち,補剛材の補強 効果によって耐力を維持したまま,補剛材の降伏および座屈を経て,主部材が破壊にいたる過程を実験的に検 証することができた.また,耐荷力および変形性能を弾塑性解析で把握できることが確認された.

最後に、本研究の遂行にあたり、ご支援を頂いた日本鋼構造協会の「鋼橋の高性能化に関する研究部会(主 査:中村俊一教授)」に厚く御礼申し上げます.

図-5 各サイクル時のエネルギー吸収量