大幅厚比角形コンクリート充填鋼管梁のせん断耐力に関する実験的研究

大阪市立大学大学院	学生員	初鹿	将司
日本工営(株)	正会員	脇坂	和征
大阪市立大学大学院	正会員	角掛	久雄
大阪工業大学	フェロー	園田原	息一郎
大阪市立大学大学院	正会員	小林	治俊

1.はじめに

コンクリート充填鋼管(CFT)構造は従来の鋼管構造と比較して耐荷力・靭性に優れており,また施工性にも 優れているため,近年では土木構造物において広く用いられている.土木分野における CFT 構造物の設計基 準^{1),2)}ではせん断耐力は鋼部材のみを考慮し,充填コンクリートは無視している.しかし,ラーメン橋脚等で はせん断力が卓越する場合が考えられ,その際に充填コンクリートを考慮しないことは過大な設計となり不経 済となる.一方,建築分野ではせん断力に対しては鋼とコンクリートの累加強度式として充填コンクリートを 考慮した基準³⁾が示されているが,土木構造物に適用するにはより大きな幅厚比も扱う必要がある.

そこで,本研究ではラーメン橋脚に多く用いられている角形 CFT 構造を対象とし,かつ大きな幅厚比に着目して,せん断耐荷力特性を明らかにすることを目的として実験を行った.

2. 実験概要

本実験に用いた供試体は断面 200×200mm,長さ 1300mmの角形 CFT 梁である.供試体は付着の影響 を考慮しないものとし,鋼管内部にリブは一切配置 していない.ただし,打設時の間隔保持材,かつコ ンクリートの抜け落ちを防ぐためにせん断スパン を避けて貫通ボルトをセパレータとして取り付け た.また,端部においてはダイヤフラムを取り付け ることで補強している.この供試体を図-1のように 設置し,載荷点を左右対称に2点取って鉛直方向に

図-1 供試体および実験装置

片側繰り返し漸増載荷を行った.軸力に関しては,端部片側からジャッキを用いて鋼材の降伏強度の15%相当の軸力を載荷している.実験時には鋼材が負担するせん断力等を検討するため,鋼管ウェブの左右,裏表ともにせん断スパン中央に3軸ひずみゲージを50mm間隔で設置した.また,供試体全体の変形状況を検討するため支間中央に変位計を,曲げによる挙動を検討するために下フランジ中央に1軸ひずみゲージを設置した.実験変数はせん断スパン比(0.75,1.00,2.00)と軸力の有無で計6体実験を行った(表-1参照).鋼管の板厚に関しては大幅厚比とするため0.8mm(幅厚比250)とした.ただし,せん断スパン比1.00以下の場合は全周同一板厚とし,せん断スパン比2.00の場合はフランジ厚を6mmと大きくすることでせん断破壊が生じやすいようにしている.なお,実験時の鋼材およびコンクリートの材料定数を表-2に示す.

表-1 供試体一覧

供試体夕	せん断	フランジ	ウェブ	軸力	
供試件石	スパン比	厚(mm)	厚(mm)		
S0.75-T0.8	0.75	0.8	0.8		
S1.00-T0.8	1.00	0.8	0.8	無し	
S2.00-T0.8	2.00	6.0	0.8		
S0.75-T0.8A	0.75	0.8	0.8		
S1.00-T0.8A	1.00	0.8	0.8	有り	
S2.00-T0.8A	2.00	6.0	0.8		

表-2 材料定数

				鋼材の材料	料定数	コンクリートの材料定数				
軜	助	板厚	降伏強度	破断強度	ヤング係数	ポアソン比	圧縮強度	引張強度	ヤング係数	ポアソン比
		(mm)	(MPa)	(MPa)	(GPa)		(MPa)	(MPa)	(GPa)	
無し [.] 有り [.]	0.8	201	327	186	0.33	18.9	1.15	18.4	0.20	
	6.0	273	360	201	0.30					
	0.8	309	373	208	0.34	20.6	2.51	21.6	0.15	
	6.0	273	360	201	0.30					
	6.0	273	360	201	0.30					

キーワード コンクリート充填鋼管,大幅厚比,せん断耐力

連絡先 〒558-8585 大阪市住吉区杉本 3-3-138 TEL and FAX 06-6605-2723

3. 実験結果

(1)破壊状況 せん断スパン比 0.75 の供試体は図-2(a)に示すようにせん断スパ ン内において内部コンクリートにせん断ひび割れが発生し,せん断破壊が生 じた.ただし,鋼管ウェブにはせん断座屈は生じていなかった.せん断スパ ン比 2.00 の供試体は鋼管ウェブにせん断座屈が生じ,図-2(b)に示すようにせ ん断スパン内に内部コンクリートのせん断ひび割れが確認された.しかし, 全体的には曲げに対する変形が支配的となっており,最終的には曲げ破壊が 生じたと考えられる.一方,せん断スパン比 1.00 の供試体は曲げ破壊のみが 生じる結果となった.また,軸力の有無による違いに関しては,変形の度合 に差異は見られるものの破壊形式としては同様の結果となった.

(2)**下フランジひずみ曲線 図-3**に内部コンクリートにせん断ひび割れの生じたせん断スパン比0.75,2.00に関して,軸力載荷時における鋼管の荷重-下フランジひずみ曲線を包絡線で示した.この図より,せん断スパン比0.75の供試体には降伏後に再び勾配の変化が見られ,この付近において内部コンクリートにひび割れが生じたものと考えられ,他の計測結果等を考慮してこの勾

配の変化点を内部コンクリートのせん断破壊点とした.一方,せん 断スパン比 2.00 の供試体にはひび割れの発生による降伏後の勾配の 変化が明確に現れておらず,曲げによる挙動が支配的であることが 確認できる.また,図中には実験時の観察および他の計測結果から 求めたせん断座屈発生点を示しているが,座屈の発生による挙動へ の影響は見られなかった.

(3)各基準による耐力値との比較 表-3に内部コンクリートにせん断 ひび割れを生じたせん断スパン比 0.75,2.00 において前項で仮定し たせん断破壊および座屈発生時のせん断力,各部材の分担せん断力 ならびに各基準^{1),2),3)}による算定せん断耐力を示した.これより,せ

ん断スパン比 0.75 の供試体における破壊荷重(S)は土木学会基準によるせん断耐力(S_{cul})を大きく上回っており, せん断スパン比 2.00 におけるせん断座屈発生荷重(S_b)も同耐力の 2 倍以上の値を示している.また,同基準と 各供試体を RC 換算することで求めたディープビームによるコンクリートせん断耐力²⁾との累加強度(S₁)を示 したが,これはほぼ一致した値を示している.建築学会基準における累加強度によるせん断耐力(S₃)に対して は各供試体ともに算定耐力と異なる結果となった.

供試体名) S _b (kN)	分担せん断力		土木学会算定せん断耐力				建築学会算定せん断耐力				
	S(LN)		鋼管	コンクリート	鋼	管	コンクリート	累加	強度	鋼管	コンクリート	累加	強度
	S(KIN)		S _s (S _{bs})	S _c (S _{bc})	S _{cul} (kN)	S(S _b)/S _{cul}	S _{dd} (kN)	$\begin{array}{c} S_1 \\ (S_{cul} + S_{dd}) \end{array}$	$S(S_b)/S_1$	_s S _u (kN)	_c S _u (kN)	$\begin{array}{c} \mathbf{S}_2\\ (_s\mathbf{S}_u+_c\mathbf{S}_u)\end{array}$	$S(S_b)/S_2$
S0.75-T0.8	140.4	-	23.3	117.1	21.9	6.4	125.4	147.3	0.95	-	-	-	-
S2.00-T0.8	-	67.5	26.0	41.5	28.4	2.4	67.9	96.3	0.70	-	-	-	-
S0.75-T0.8A	147.5	-	19.3	128.2	32.0	4.6	131.3	163.3	0.90	56.8	19.2	76.0	1.94
S2.00-T0.8A	-	91.0	27.2	63.8	28.4	3.2	67.9	96.3	0.95	145.7	30.6	176.3	0.52

表-3 各供試体の算定せん断耐力と耐力比

本研究では大幅厚比の角形 CFT 梁を対象に,鋼,コンクリートそれぞれが負担するせん断力に着目して検討を行った.その結果,大幅厚比の構造では土木学会基準において算出した鋼とコンクリートのせん断耐力の 累加強度にほぼ等しいことが分かった.

本研究は日本建設コンサルタント(株)大阪支社に支援を戴き行ったものである.ここに記して感謝の意を表す. 参考文献 1)土木学会:鋼構造物設計指針 PART-B 合成構造物,1997.2)土木学会:コンクリート標準示方書 設計編,1996.3)日本建築学会:コンクリート充填鋼管構造設計施工指針,1997.

(b) S2.00-T0.8A 図-2 せん断ひび割れ

