中空式二重鋼管合成柱の中心圧縮実験

神 戸 市 立 高 専	正会員	上中宏二郎 , 神戸市立高専専攻科	早 見 真
大阪市立大学大学院	正会員	鬼頭 宏明,大阪工業大学 フェロー	· 園田恵一郎

1.はじめに

鋼・コンクリート二重鋼管合成部材¹⁾(以下,DCFT とする)とは,同心円上に2つの異なる径の鋼管を配置 し,それらの間にコアコンクリートを充填した断面を有 する(図-1参照).これにより,従来のコンクリート充 填鋼管柱²⁾(以下,CFTとする)と比較して,軽量とな る利点を有する.そこで本研究では,DCFT 特有のパラ メーターである内径・外径比(D_i / D_o)が,中心圧縮強 度に与える影響について実験的に検討することを目的と している.

2.実験方法

供試体一覧を表-1 に,載荷方法を図-2 にそれぞれ示 す.供試体の高さ(H)および外径(D_o)はそれぞれ 450mm, 160mm と一定であり,内鋼管径(D_i)を0(内鋼管無し; 通常 CFT), 37.5,75,112.5mm と変化させている.外 鋼管厚(t_o)および内鋼管厚(t_i)は公称 1.0,1.6,2.3mm の三種類であり,内鋼と外鋼の両管厚は,等しくした.

載荷方法は 2MN アムスラー式万能試験機を用いて, 載荷板,球座,ロードセルを介し供試体に中心圧縮力を 与えた(図-2 参照).なお,測定項目は外鋼管と内鋼管 の軸方向ひずみ(ε_z),周方向ひずみ(ε_θ),および鉛直 変位(δ :鋼管長の縮み)である.

3.実験結果と考察

実験結果一覧を表-1 に示す.ここで,参照値である *N_{uest}*とは,日本建築学会で提案されている短柱の中心圧 縮算定強度式²⁾(以下,累加強度式とする)から算定さ れたものであり,(1)式のように表される.

$$N_{uest} = (1+\eta) A_s f_v + A_s f_c \tag{1}$$

ここで, A_s : 鋼管の断面積, f_y : 鋼管の降伏強度, A_c : コンクリートの断面積, f_c : コンクリート強度, η : 鋼 管による充填コンクリートへの拘束係数(=0.27)をそ れぞれ示す.

(1)破壊形式

観察された破壊形式は,鋼管内のコンクリートの斜め ずれによる面外破壊(以下,S型とする.写真-1(a)参 照)および載荷点近傍の鋼管が座屈じ,そこで充填コン クリートが圧壊する局部座屈(以下 B型とする.写真-1(b)参照)の二種類に分けられた.

_____表-1より,内径・外径比が大きくなるにしたがって, リー キーワード:合成柱,二重鋼管,内径・外径比,中心圧縮強度

Steel Tube Concrete (a)CFT (b)DCFT 図-1 CFT と DCFT の断面 Load Cell 2MNLoading $Plate(t22 \times 250)$ + :Strain Gauge 225 : Disp. Transducer +450 160 225 65 図-2 載荷方法

、 、~/ 写真-1 破壊形状

S 破壊から B 破壊に移行する傾向が窺える.これは,内 径が大きくなると部材厚が薄くなるために,充填コンク リートの圧縮分担が低くなり,B型破壊を呈したと考え

連絡先(〒651-2194 神戸市西区学園東町 8-3, Phone & Fax: 078-795-3540)

#	Tag	D_{o}	t	D_i	$D_{\rm e}/D_{\rm e}$	D_o /	A_{s}	f_y	A_{c}	f_c	N _{uest}	N_{u}	N_u /	Fail.
		(mm)	(mm)	(mm)	D_i / D_o	t _o	(mm^2)	(MPa)	(mm^2)	(MPa)	(kN)	(kN)	N _{uest}	Mode
1	t10-000	160	0.77	0.0	0.00	207.8	386	292	19823	19.4	528	576	1.09	S
2	t10-375	160	0.77	37.5	0.23	207.8	479	292	18684	19.4	540	570	1.06	S
3	t10-750	160	0.77	75.0	0.47	207.8	568	292	15215	19.4	506	498	0.98	S
4	t10-1125	160	0.77	112.5	0.70	207.8	658	292	9649	19.4	431	526	1.22	В
5	t16-000	160	1.58	0.0	0.00	101.3	785	272	19281	19.4	646	770	1.19	S
6	t16-375	160	1.58	37.5	0.23	101.3	979	272	18045	19.4	688	795	1.15	S
7	t16-750	160	1.58	75.0	0.47	101.3	1166	272	14592	19.4	686	487	0.71	В
8	t16-1125	160	1.58	112.5	0.70	101.3	1351	272	8913	19.4	640	533	0.83	В
9	t23-000	160	2.25	0.0	0.00	71.1	1114	266	18973	19.4	744	838	1.13	S
10	t23-375	160	2.25	37.5	0.23	71.1	1396	266	17619	19.4	813	796	0.98	S
11	t23-750	160	2.25	75.0	0.47	71.1	1660	266	13977	19.4	831	888	1.07	В
12	t23-1125	160	2.25	112.5	0.70	71.1	1925	266	8237	19.4	809	678	0.84	В

表-1 実験結果一覧

られる.

(2) 変形特性

図-3 に典型例として鋼管厚 2.3mm シリーズ 4 体の変 形特性を示す.同図より,内径外径比が大きくなるにし たがって,載荷初期段階において,変形が大きくなって いたことが分かる.これは,内径外径比が大きくなると, 中空部の占める割合が大きくなり,軸方向剛性が小さく なったためである.また,変形性能(靱性)は,中空部 断面積最大の t23-1125 は若干劣るものの,t23-000 とほ ぼ同等のものが得られた.

(3)中心圧縮強度

図-4 に本実験で得られた中心圧縮強度(N_u)と式(1) の算定値を比較したものを示す.なお,最大荷重到達前 に鋼管の溶接切れを起こした t16-750(図中*)は検討対 象外としている.

図より,本実験で得られた DCFT の中心圧縮強度(N_u) は,相対比 1.03,相関係数 r = 0.86 で概ね CFT と同様 に評価できる結果となった.すなわち,内鋼管の存在に より中空断面でありながらも CFT 同様にコンクリート への拘束効果を与えていたと考えられる.

4.まとめ

本研究は同心円上に二つの鋼管を配置し,それらの鋼 管の間にコンクリートを打設した DCFT の中心圧縮実 験を行い,内径・外径比が中心圧縮特性に与える影響に ついて実験的に考察したものである.以下に,結論付け られる事項を列記する.

- (1)得られた破壊形式はコンクリートの斜めずれによる面外破壊,および供試体上端の局部座屈破壊であった.
- (2) 内径・外径比が大きくなるにしたがって,供試体 の軸方向剛性は低下する傾向にあった.
- (3) 2.3mm 供試体において,t23-1125 を除けば DCFT は CFT とほぼ同様の変形性能が得られた.
- (4) 得られた DCFT の中心圧縮強度は, CFT の累加強 度式を用いて概ね評価できた.

図-4 累加強度値と中心圧縮強度

謝辞:神戸市立工業高等専門学校に在籍された竹田美登 里,横谷征平各氏のご協力に感謝の意を表します.

参考文献

- Wei, S. et al.: Performance of New Sandwich Tube under Axial Loading: Experiment, Jour. of Struct. Eng., ASCE, Vol. 121, No. 12, pp. 1806-1814,1995.
- 2) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・ 同解説, 2001.