中央大学	学生員	佐藤武司	三井造船鉄構工事(株)	連	重俊
中央大学	正会員	平野廣和	愛知工業大学	青オ	k徹彦

1.はじめに

阪神大震災の教訓をもとに橋梁の耐震性向上のため に、種々の落橋防止対策が講じられてきている。振動 系からの影響を考慮し、ゴムを主とした免震支承が橋 梁支承部に導入されるに至った。しかし、それにより 橋梁全体系での減衰が遅くなる傾向を示している。こ の様な振動特性の変化と車両の走行に起因したくり返 し起振の影響により、従来の静的荷重のみで設計され た橋梁付属構造物の照明柱や標識柱等の長柱基部で、 疲労亀裂が生じる事例が発見されてきている。本研究 ではこのような長柱の振動特性を把握¹⁾し、さらに基 部周辺の応力分布を確認し、紫外線硬化型樹脂²⁾の補 強材を用いてこれらの被害に対処することを提案する。

<u>2.標識柱の疲労破壊対処法</u>

基部は、応力集中の場であることから、ここに紫外 線硬化型の FRP 樹脂を巻き付けることにより、疲労耐 久性向上に対し評価する。モデルは、複雑な挙動を示 すと考えられる、図-1 に示すF型標準標識柱を対象と する。疲労亀裂の対処法は、図-2 の様に紫外線硬化型 樹脂を巻き付け、補強することを考える。数値解析、 実験により振動特性と応力発生状態を確認する。実機 による大型振動台を用いた実験は、愛知工業大学耐震 実験センターで行う。

<u>3.解析・実験条件</u>

解析には、汎用構造解析用ソフト COSMOS/M を用いる。 解析条件として表-1 の値を用いる。強制変位として、 塔頂部へ、発生頻度の高い動きとされるポールの直径 の約 1/3 の 100mm を与えた。なお、熱応力は考慮しな い。実験条件として、1/1 モデルのF型標識柱全体に対 して、固有モードの1次・2次・3次モード方向の3方 向に初期強制変位を与え自由振動実験を行う。実験で は図-3・表-2 に示すように取り付けた加速度計・変位 計により固有振動数、標識柱の軌跡を求め振動特性を 把握する。また、補強リプ上端に取り付けたひずみゲ ージからひずみ、応力を把握する。

キーワード:F型標識柱,紫外線硬化型樹脂,補強対策, 長柱寿命延伸補強

図-1 F型標準標識柱のモデル

図-2 紫外線効果型樹脂補強モデル 表 - 1 解析パラメータ

	ポール 高さ	7 2 5 0 m m		
	標 識 部 の 幅	4900mm		
博業ササイブ	鋼管の外径	267.4mm		
1宗 114 14 9 1 ス	鋼管の板厚	9.3 m m		
	基部のリブ高さ	200 m m		
	基部のリブ幅	100 m m		
	単位質量	8.02*10 ⁻¹⁰ kg/mm ²		
Stee I材料特性	弾性率	2.1*10 ⁴ kg/mm ²		
	ポアソン比	0.3		
	リブ上端より下	100mm		
FRP添付範囲	リブ上端より上	100 ~ 300 m m		
	厚さ	1.0mm		
	単位質量	2.04*10 ⁻¹⁰ kg/mm ²		
FRP シ ー ト 材 料 特 性	弾性率	7.4*10 ² kg/mm ²		
	ポアソン比	0.1		

図-3 変位計・加速度計の取り付け位置

表-2 箱型変位計・加速度計・レーザー変位計の有無

	載荷方阿	句	載荷鉛直方向		
箱型変位計	加速度計	レーザー変位計	箱型変位計	加速度計	レーザー変位計
箱型変位計	加速度計		箱型変位計	加速度計	
箱型変位計	加速度計		箱型変位計	加速度計	
箱型変位計	加速度計		箱型変位計	加速度計	
箱型変位計	加速度計		箱型変位計	加速度計	
載荷水平方向			鉛直方向		
		レーザー変位計			レーザー変位計

連絡先:文京区春日 1-13-27 中央大学理工学部土木工学科 TEL 03-3817-1816

<u>4.解析・実験結果、考察</u>

F型標準標識柱は、1次モードの面外に動くモード形 状(ピッチング)の影響を受けながら振動するという 特性を持ち、発生頻度の高いとされる動きにより、補 強リプ上端に、一般構造用鋼材(SS400)の降伏応力の 22kgf/mm²程度の応力が生じていることを確認した¹⁾。

補強リブ上端に生じる応力を、解析値と実際の振動 実験で得られた実験値で比較する。ただ、今回の実験 では、塔頂部の変位が解析で仮定した 100mm に達して いなかったので、20.25mm の時について解析を再度行い 比較した。この時の結果を表-3 に示す。これより、実 験値は解析値よりも多少大きくなっているが、これは、 溶接による熱応力も加わっているためと考えられる。 解析値、実験値共に近い値が得られたので、塔頂部の 変位が 100mm の場合にも同じような傾向が得られるこ とが考えられる。なお最大主応力は以下の式で求めた。 最大主応力

$\boldsymbol{s} \max = \frac{E}{1-2} (\boldsymbol{e} \max + \boldsymbol{e} \min)$
$= \frac{E}{2} \left[\frac{\mathbf{e} 1 + \mathbf{e} 2}{1 - \mathbf{e} 2} + \frac{1}{1 + \sqrt{2 \left\{ (\mathbf{e} 1 - \mathbf{e} 3)^2 + (\mathbf{e} 2 - \mathbf{e} 3)^2 \right\}}} \right]$

树面动态	ひずみゲージ			最大主	最小主	主ひずみ方	最大主応力	最大主応力
均克吗友匹				ひずみ	ひずみ	向までの角度	実験値	解析值
(mm)	(µ)	(µ)	(µ)	(µ)	(µ)	(°)	(kgf/mm ²⁾	(kgf/mm ²⁾
20.10	214	41	164	221	34	0.199	5.339	
20.30	202	40	154	209	33	0.196	5.043	
20.25	206	40	157	213	33	0.197	5.132	4.116
20.25	212	42	161	219	35	0.190	5.290	4.116
20.30	203	40	155	210	33	0.198	5.067	
20.25	215	42	163	222	35	0.190	5.359	4.116
20.25	215	42	164	222	35	0.194	5.361	4.116
20.15	201	40	154	208	33	0.200	5.025	/

無補強タイプ 紫外線硬化型樹脂補強タイプ

(幅400mm)

図 - 4 応力分布図

次に、応力集中する基部周辺に、補強材を巻き付け た場合の静的解析を行う。補強材として光硬化型樹脂 を用い、幅、厚み等をパラメータとした。リブ上端の 溶接部が熱応力の影響もあり亀裂破壊が生じやすいこ

図-5 基部からの距離とリブ上の鉛直方向断面の応力の関

とを考慮して、リブ上端部より下へ 100mm の位置にシ ート下端がくるように巻き付ける。この時の応力分布 図を図-4 に、リブの上端が応力集中する場であること を考慮して、この断面を同一鉛直方向断面とした応力 結果を図-5 に示す。結果より、基部補強リブの上端部 分の応力が約70%程度まで下がって、降伏応力には至ら ない程の応力まで下がっていることがわかる。この傾 向はどの補強パターンについても同じである。これは、 基部周辺の断面積が増加したことも考えられるが、応 力集中する部分の引っ張り強度が増加したことによる ものとも考えられる。

<u>5.おわりに</u>

本研究では、補強リブ上端の応力集中する部分の応 力が、解析値・実験値共に同じような値を得ることが できた。また、発生頻度が高いとされている変位で、 この補強リブ上端に、一般構造用鋼材(SS400)の降伏 点近くの応力が生じ、この部分に FRP 樹脂の補強材を 巻き付けることにより、この応力が約70%程度まで下が ることも解析により把握できた。

本研究は、中央大学、愛知工業大学、三井造船鉄構 工事(株)、(株)十川ゴム、中井商工(株)、大日本イン キ化学工業(株)との共同研究の一部である。

参考文献 1)佐藤武司他:標識柱等の橋梁付属物の振動 特性、土木学会第29回関東支部技術研究発表会、I-38、2002.3 2)野中他:紫外線硬化型樹脂の材料特性を生かした補修・補 強対策