大同工業大学大学院 学生員 名木野晴暢 大同工業大学 都市環境デザイン学科 正員 水澤富作

1. **まえがき** 異方性の大きな板や厚板の振動解析では,横せん断変形や回転慣性の影響が無視できなくな るので,これらの影響を考慮したせん断変形板理論が用いられている¹⁾.しかし,異方性の大きな厚板では, 板厚が大きくなると厚さ方向の変形モードが現れるので^{1,3)},厚さ方向の応力やひずみ成分も考慮する必要が ある.これまでに,等方性厚板を対象にした3次元弾性理論の適用に関する研究は比較的多く報告されてい るが,3次元弾性理論に基づく異方性厚板の研究はさほど多く報告されていないように思われる³⁾.

本研究では,1方向に Fourier 級数展開した spline prism 法(SPM)と2方向に Fourier 級数展開した spline layer 法(SLM)を用いて,直交異方性厚板の振動解析を行い,本手法の解の収束性や精度比較について検討を行っている.また,直交異方性厚板の振動特性に与える板厚比や異方性パラメータの影響などについて明らかにしている.

<u>2. 解析手法</u> 直交異方性弾性理論とポテンシャルエネルギー最小の原理を用いて,図-1 に示される *spline prism* 要素モデルと *spline layer* 要素モデルを導く.また,式の定式化にあたり,無次元直交座標系,**x**,**h**,**z** を用いる.ここで,*a*,*b*,*h* はそれぞれ厚板の幅,長さと厚さである.

Spline prism 要素内で仮定される x, y, z 方向の変位関数U, V, W は, それぞれ次式で表される.

$$U = \sum_{l=1}^{r} \sum_{m=1}^{i_{x}} \sum_{n=1}^{i_{z}} A_{mn} \cdot N_{m,k}(\mathbf{x}) \cdot N_{n,k}(\mathbf{z}) \cdot Y_{l}(\mathbf{h})$$

$$V = \sum_{l=1}^{r} \sum_{m=1}^{i_{x}} \sum_{n=1}^{i_{z}} B_{mn} \cdot N_{m,k}(\mathbf{x}) \cdot N_{n,k}(\mathbf{z}) \cdot \overline{Y}_{l}(\mathbf{h})$$

$$W = \sum_{l=1}^{r} \sum_{n=1}^{i_{x}} \sum_{n=1}^{i_{z}} C_{mn} \cdot N_{m,k}(\mathbf{x}) \cdot N_{n,k}(\mathbf{z}) \cdot Y_{l}(\mathbf{h}) \dots (1)$$

また, *spline layer* 要素内で仮定される x, y, z 方向の変位関数U, V, W は, それぞれ次式で与えられる.

$$U = \sum_{m'=1}^{r} \sum_{n'=1}^{s} \sum_{l'=1}^{i_{z}} A_{l'} \cdot N_{l',k}(\boldsymbol{z}) \cdot \overline{X}_{m'}(\boldsymbol{x}) \cdot Y_{n'}(\boldsymbol{h})$$

$$V = \sum_{m'=1}^{r} \sum_{n'=1}^{s} \sum_{l'=1}^{i_{z}} B_{l'} \cdot N_{l',k}(\boldsymbol{z}) \cdot X_{m'}(\boldsymbol{x}) \cdot \overline{Y}_{n'}(\boldsymbol{h})$$

$$W = \sum_{m'=1}^{r} \sum_{n'=1}^{s} \sum_{l'=1}^{i_{z}} C_{l'} \cdot N_{l',k}(\boldsymbol{z}) \cdot X_{m'}(\boldsymbol{x}) \cdot Y_{n'}(\boldsymbol{h}) \qquad \dots (2)$$

図-1 spline 帯板モデルと無次元直交座標

ここで, $N_{m,k}(\mathbf{x})$, $N_{n,k}(\mathbf{z})$, $N_{l',k}(\mathbf{z})$ は正規化された B - spline 関数, A_{mn} , $A_{l'}$ 等は未定係数である. spline prism 要素において, **h**軸に垂直な相対する2面が単純支持を仮定すれば、固有関数は次式で表す ことができる. $Y_l(\mathbf{h}) = \sin(lph)$, $\overline{Y}_l(\mathbf{h}) = \cos(lph)$; l = 1, 2, ..., r ...(3) また, spline layer 要素において,周辺単純支持を仮定すれば、固有関数は次式で表すことができる.

 $X_{m'}(\mathbf{x}) = \sin(m'\mathbf{p}\mathbf{x}), \overline{X}_{m'}(\mathbf{x}) = \cos(m'\mathbf{p}\mathbf{x}), Y_{n'}(\mathbf{h}) = \sin(n'\mathbf{p}\mathbf{h}), \overline{Y}_{n'}(\mathbf{h}) = \cos(n'\mathbf{p}\mathbf{h}); m' = 1, \dots, r, n' = 1, \dots, s \dots (4)$ 直交異方性弾性体の構成式は, {s }=[D]{e}で表され, [D]は異方性弾性マトリクスである ³.

したがって,ポテンシャルエネルギー最小の原理と固有関数の直交性を用いれば,次式の固有方程式が得られるので,各級数ごとにwとモード形状が求められる.ただし,w(rad/sec)は円振動数である.

$$SPM: \left(\begin{bmatrix} K \end{bmatrix}_{mn\,n\,ij}^{l} - \mathbf{w}^{2} \begin{bmatrix} M \end{bmatrix}_{mn\,ij}^{l} \right) \left\{ \Delta \right\}_{l} = 0 \quad ; \ l = 1, 2, \cdots, r \qquad \dots (5)$$
$$SLM: \left(\begin{bmatrix} K \end{bmatrix}_{l'\,q}^{m'n'} - \mathbf{w}^{2} \begin{bmatrix} M \end{bmatrix}_{l'\,q}^{m'n'} \right) \left\{ \Delta \right\}_{m'n'} = 0 \quad ; \ m' = 1, 2, \cdots, r \quad , \ n' = 1, 2, \cdots, s \qquad \dots (6)$$

キーワード spline prism 法, spline layer 法,直交異方性弾性理論,厚板,振動解析 〒457-8532 名古屋市南区白水町40 大同工業大学都市環境デザイン学科 ATEL 952-612-5571

3. 数値計算例及び考察

3.1 本手法の収束性と精度比較

図-2 には,表-1 に示す材料特性値を持つ周 辺単純支持されたスプルース柾目板の1次の 振動数パラメータ n_{1st}^* に与える *spline* 次数k-1, ^{L(y)}, プリズム要素の分割数 $M_x = M_z \ge \nu + 7$ の分割数 M_z の影響が示してある.ここで,振動数パラメ ータを $n^* = w b^2 \sqrt{rh/D_x}$ で表し, $D_x = E_x h^3 / 12(1-u_{xy})$ u_{yx})は板の曲げ剛性である.これより,要素の分割数を増 大すると,一定値への安定した収束性が示され,またk-1を4次に取れば,少ない分割数で安定した収束値が得られ ている.以後の数値計算例では,k-1=4に取り,*SPM* 及び*SLM*の要素分割数は12 としている.

表-2 には,周辺単純支持されたスプルース柾目板の振動 数パラメータn*の精度比較が示してある.また,比較のた めに近藤ら²⁾の*Mindlin*板理論による結果(*MPT*)も示 してある.これより,*SPM*と*SLM*は板厚比*h*/*a*に関わ らずほぼ完全一致していが,*MPT*の結果と比較してやや 大きめな値が示されている.また,板厚が大きくなると, 高次の振動モードにモードのスイッチが現れる.これは, *MPT*で仮定されるせん断修正係数*k*を異方性の性質を無 視して,一定値で与えているためと思われる.

3.2 振動数パラメータ*n*^{**}に与える異方性パラメータ *E*_x / *E*_x と板厚比の影響

図-3 には,周辺単純支持された正方形板の曲げモードと 厚さ方向の変形モードに対応した振動数パラメータ n^{**} に与える異方性パラメータ E_y/E_x と板厚比の影響が示してある.ここで,振動数パラメータは, $n^{**} = w b^2 \sqrt{r/h^2 E_x}$ で表している.また,他の異方性パラメータを $E_z/E_x = 1.0$, $u_{xy} = u_{yz} = u_{zx} = 0.3$, $G_{xy}/E_x = G_{yz}/E_x = G_{zx}/E_x = 0.385$ と仮定している.これより,振動数パラメータに与える E_y/E_x の影響は,板厚比が小さいほどその影響が顕著に見られる.また,厚さ方向の変形モードと比較して,曲げモードの n^{**} が E_y/E_x の影響を大きく受ける.

<u>4.</u> **まとめ** 本研究で得られた結果をまとめると,以下の 通りである.1)本手法は, *spline* 次数を高めれば,少な い分割数で安定した収束値が得られる.2) *SPM と SLM* は,h/aに関わらずほぼ完全一致し,*MPT* とも非常に良 く一致している.3) n^{**} に与える $h/a \ge E_y/E_x$ の影響は, 板厚比が小さいほどその影響は顕著に見られる.また,厚 さ方向の変形モードと比較して,曲げモードの n^{**} が E_y/E_x の影響を大きく受ける.

参考文献 1). 水澤他:構造工学論文集, Vol.39A, pp1-12, 199 pp1-12, 2001.3). 名木野他:平成13年度土木学会中部支部

	衣-1	シ	トリスノル	-	スの	21不	+}守	1生10 "	.)
3.					3.		2.		

ヤング係数	<u> 10³ x 10</u>	kgf/cm ²]	せん断弾性係数 [×10 ³ kgf/cm ²]			ポアソン比		
E _R	Ε _T	EL	G _{RT}	G _{LT}	G _{LR}	RT	LT	LR
9.2	5.1	118.0	0.34	7.30	7.70	0.43	0.47	0.37

L(y), R(x), T(z)は, それぞれ繊維, 放射及び接線方向を示す。

- 図-2 スプルース柾目正方形板の n^{*1st} に与える k - 1 と要素分割数の影響: h/a=0.2, b/a=1.0
- 表-2 スプルース柾目厚板の振動数パラメータ n* の精度比較:b/a=1.0

h/a	Theory	Method	modes						
II/a	Theory		1st	2nd	3rd	4th	5th		
0.05		SDM	(1,1)	(2,1)	(1,2)	(2,2)	(3,1)		
	3D	SFIN	31.28	54.19	72.02	89.35	97.95		
		SLM	31.27	54.19	72.02	89.35	97.95		
	2D	MPT ²⁾	31.22	54.17	70.98	88.54	97.73		
		SDM	(1,1)	(1,2)	(2,1)	(1,3)	(2,2)		
	3D	SFIN	15.85	26.96	38.22	38.38	47.88		
0.2		SLM	15.85	26.96	38.22	38.37	47.88		
	2D	2D MPT ²⁾	(1,1)	(1,2)	(1,3)	(2,1)	(1,4)		
			15.61	26.10	36.71	37.68	46.84		

(m,n)は ,それぞれ x,y 方向のモード次数を示す .

