接触型探触子の作る波動場に関する順、逆解析

東京工業大学	学生会員	木村勇太
東京工業大学	正員	木本和志
東京工業大学	正員	廣瀬壮一

1. はじめに

固体中の欠陥を検出するための非破壊検査手法の 一つである超音波探傷試験では、圧電体を利用した 接触型の探触子が用いられることが多い。接触型の 探触子では圧電体の振動を接触媒質を介して試験体 に伝えることにより超音波の送受信が行われる。従 来、探触子からの波動場の解析は、探触子と試験体 間の接触圧を、空間的に一定な分布をもつ表面力に 置き換えることにより行われてきた。しかしながら、 探触子にはそれぞれ個性があり、また保持の仕方や 接触媒質の厚さが変わると試験体と探触子の間の接 触圧が変化し、結果として試験体中に作られる入射 波動場も異なってくる可能性がある。そこで、本研究 では探触子毎に適切な表面力分布を設定することが きるよう、何点かで観測した変位データから逆にその ような表面力を推定するための逆解析手法の開発を 行った。このような逆解析手法を開発するためには、 対応する順問題、すなわち表面力を与えたときに形 成される変位場を求める問題を解くことができなけ ればならない。そこで、本研究では、はじめに Lamb の解を用いた順解析を行い半無限体中の波動場の特 性について考察する。次に、逆解析法の定式化なら びにその解法について説明し、最後に数値解析結果 を観測データとして用いた逆解析例を示す。

図-1 順解析結果 $t = 3.1(\mu s)$

2. 順解析

半無限弾性体に点荷重を作用させたとき、波動伝播の様子を解析する問題はLambの問題と言われ古 くから研究されてきた。均質、等方な弾性体に対し て原点に時間調和な鉛直方向の点荷重が作用する時 次式のように厳密解が得られている¹⁾。(z 成分)

$$u_{z}(\mathbf{x}) = \frac{1}{2\pi\rho c_{T}^{2}} \int_{0}^{\infty} [(2\xi^{2} - k_{T}^{2})e^{-\sqrt{\xi^{2} - k_{L}^{2}}z} -2\xi^{2}e^{-\sqrt{\xi^{2} - k_{T}^{2}}z}]\frac{\sqrt{\xi^{2} - k_{L}^{2}}}{D(\xi)} J_{0}(\xi r)\xi d\xi \qquad (1)$$

ここで k_L, k_T はそれぞれ縦波、横波の波数であり、 c_T は横波の波速である。 ρ は媒体の密度、 J_0 は0次のベッ セル関数である。(1) 式を計算することで任意の観測 点 $\mathbf{x} = (r, z)$ での変位を得ることが出来る。また、問 題の対称性から半径r'のリング状領域に $\delta(r-r')/2\pi r$ のように表面荷重を作用させた時の解 $U_z(\mathbf{x}, r')$ も式 (1) を求めたのと同様な方法で得ることが出来る。

$$U_z(\mathbf{x}, r') = \frac{1}{2\pi\rho c_T^2} \int_0^\infty h(\xi, \mathbf{x}) J_0(\xi r') d\xi \qquad (2)$$

式 (2) で $h(\xi, \mathbf{x})$ は式 (1) の被積分関数である。この 解を用いれば z 軸に関して対称な任意の表面力分布 q(r) を作用させた時の解は次式のようになる。

$$u_z(\mathbf{x}) = \int_0^a q(r) U_z(\mathbf{x}, r) dr \tag{3}$$

ここで a は表面力の分布域の半径である。

順解析例としてここでは点荷重を作用させたときの変位場 | u | を図1 に示す。ここでは入射波として2.0MHz の sin 波1 波を用い、式(1)の時間調和な解と FFT により畳み込むことで時間域での解を得ている。図のように観測点の位置によっては Headwave や表面波の影響がない領域もあり、後の逆解析には観測点をそのような領域に取り、縦波のみを抽出して逆解析を行っている。

3. 逆解析

探触子による表面力 q(r) を

$$q(r) = \sum_{j=1}^{Na} Q_j \phi_j(r) \tag{4}$$

Key Words: 接触型超音波探触子、逆問題、*Lamb*の問題 〒 152-8552 東京都目黒区大岡山 1-12-1

 \mathbb{Z} –2

と Na 個の内挿関数 ϕ_j と未知数 Q_j を用い離散化 する。また ϕ_j には次のような矩形関数を用いる。

$$\phi_j(r) = H(r - r_{j-1}) - H(r_j - r)$$
(5)

ここに H(r) は heaviside step 関数である。式(4)、式
(5) を式(3) に代入すれば

$$u_z(\mathbf{x}_i) = \sum_{j=1}^{Na} Q_j \underbrace{\int_{r_{j-1}}^{r_j} U_z(\mathbf{x}_i, r) dr}_{A_{ij}}$$
(6)

を得る。式(6)中の積分を*A_{ij}*とすれば、式(6)は次のような連立方程式の形で書くことが出来る。

$$u_z(\mathbf{x}_i) = A_{ij}Q_j \tag{7}$$

ここで観測点の個数 $Nx \ge Nx > Na \ge x$ るように とり、優決定な連立方程式とすれば、最小2 乗法的意 味での最良の解 Q_j 、すなわち接触圧分布を得ること が出来る。ここでは連立方程式の解法には特異値分 解を用いた²⁾。

図-3 逆解析結果 (a=10.5mm)

4. 解析結果と考察

ここでは理想的な状態での逆解析の精度を調べるため、q(r) = -定を与えた時の図2の21点の観測点で

のそれぞれ 1.9、2.0MHz の周波数における変位を式 (3) によって計算し合計 Nx = 21 × 2 個の観測デー タを式(7)の左辺に代入して逆解析を行った。未知係 数 Q_i の数はNa = 30、表面力の半径a = 10.5mm とした。このときの解析結果を図3に示す。逆解析結 果が正解によく一致しており、この場合逆解析によ り元のq(r)がよく再現できていると言える。ここで 示したような逆解析を行うには、未知係数の数、内 挿関数の種類などを決める必要があり、その選定が 解析結果に大きく影響を及ぼす可能性がある。また q(r)の正確な分布域も実際には未知であるため、そ のような条件の一つとして考えられる。そこでここ ではq(r)の分布域の径aを変化させて逆解析を行い、 その影響について検討する。a=10mm,11mm に対し て逆解析した結果を図4、図5に示す。図4の方は径 を小さくとったゆえにQがゆれながら大きくなって いるのが分かる。図5の方は径を大きくとった部分 でQが落ちている。この比較より径を小さくとるよ りか径を大きくとって逆解析を行ったほうが精度よ く逆解析が行えると予測される。

5. まとめ

いくつかの観測点データからその発生源である表 面力分布を求める逆解析手法の定式化を行い、数値 解析結果を観測データとし逆解析を行った。

参考文献

- 1) J.D.Achenbach, *Wave Propagation in Elastic Solids*, North-Holland Pub., Amsterdam, 1973.
- 2) W.H. Press et al., Numerical Recipes in C, 技術評論 社,1999.