薄板のせん断座屈解析における遷移領域の EFGM 解析

足利工業大学	学生員	大須賀 淳
足利工業大学	正会員	末武 義崇
㈱東京鐵骨橋梁	正会員	石山竜太郎

1. はじめに

要素分割を必要としない数値解析手法として、エレメントフリー法(EFGM)が注目されているが、筆者らは Lagrange 多項式に基づく新たな EFGM を考案し、薄板の有限変位問題を中心に種々の構造解析に適用してきた¹⁾。 しかしながら、面内せん断力を受ける薄板のせん断座屈解析の場合、良好な近似解を得るためのパラメータ設定が 必ずしも容易でなく²⁾、解析条件が数値解に及ぼす影響についても、必ずしも明確になっていない。

本研究では、数値解に影響を及ぼす解析条件の中でも、初期たわみの形状に着目し、EFGM 解析の適用可能性に ついて検討を試みた。特に、異なる初期たわみ形状から出発した場合であっても、最終的な変形形状は同一の形状 になることが予想されるため、途中の遷移領域の部分について EFGM 解析が可能であるかどうかが興味のもたれる 点である。本研究では、こうしたせん断座屈の遷移領域における解析可能性について定量的に調べた。

2. Lagrange 多項式を用いた離散化

本研究のエレメントフリー法では、評価点付近にサポート領域を設定し、評価点の関数値とサポート領域内の節 点値とを Lagrange 多項式によって結び付けられる。例えば、評価点近 傍の無次元化たわみ $\omega(\xi,\eta)$ は、サポート領域内の $(N+1)^2$ 個の節点

値 $\omega_{ij}(i, j = 0 \sim N)$ を用いて、次式で表現される。

$$\omega(\xi,\eta) = \sum_{i=0}^{N} \sum_{j=0}^{N} \omega_{ij} \varphi_i(\xi) \psi_j(\eta)$$
(1)

ここに、 $\varphi_i(\xi)$ および $\psi_j(\eta)$ は Lagrange 基底であり、 $\varphi_i(\xi_i) = \psi_j(\eta_j) = \delta_{ij}$ を満たす。

式(1)で表される Lagrange 多項式を用いれば、評価点(ξ , η)にお けるたわみおよびその偏導関数を節点値で表現することができ、問題 に対応する汎関数を離散化することができる。

3.解析方法

本研究では、解析対象として面内せん断力を受ける周辺単純支持平 板を選択し、異なる初期たわみを与えた場合の有限変位挙動について 解析を行った。初期たわみの形状は、図1~図3に示したように、せ ん断座屈問題の固有値解析³⁾を行った際に得られる第1~第3固有モ ードの形状とし、最大初期たわみが板厚の1/100となるように設定し た。数値解析にあたっては、総節点数11×11=121、縦横比b/a=1、 幅厚比t/a=0.02、Poisson 比v=0.3、Gauss 積分次数8、セル総数 10×10=100、サポートパラメータ $\rho=1.2$ として解析を行った。

適用境界条件は、薄板の周辺でたわみおよび曲げモーメントをゼロ としたほか、境界に直行する方向の面内変位をゼロとした。非線形計 算に際しては、図の点Qにおけるx方向変位を制御パラメータとする 変位増分法を用いることとし、Newton法のアルゴリズムに従った収束 キーワード:エレメントフリー法, Lagrange 多項式, 有限変位解析, せん断座屈, 固有モード 〒326-8558 栃木県足利市大前町 268-1 足利工業大学 TEL0284-62-0605 FAX0284-64-1061 計算を実施した。

4. 解析結果および考察

解析結果を図4~図7に示す。図4は荷重-変位関係を示したものであり、横軸に板中央点のたわみを板厚で割った無次元化たわみ ω_cを、縦軸に周辺のせん断力をせん断座屈荷重⁴⁾で割った無次元 化荷重Γをそれぞれとって図示した。図から明らかなように、各 固有モードとも類似の変形経路をたどっており、数値的に安定した 結果が得られている。また、第1および第3固有モードについては、 ほぼ同一の変形経路が得られているのに対し、第2固有モードにつ いては、やや高めの座屈荷重を示す結果が得られた。

図 5~図 7 は、図 4 の 3 点 A、B、C の荷重レベルにおける変形 モードを表している。ここでは、例として、第 2 固有モードに対応 したモデルの変形モードのみを示した。図 5 から明らかなように、 図 4 の点 A における変形モードは、荷重レベルが低いために、初期 たわみとほぼ同様な形状となっている。一方、荷重レベルが増大し、 図 4 の点 B、すなわち座屈荷重レベル付近になると、図 6 に示した ように山側の変形が増大するとともに、谷側の変形が消失しつつあ る様子が認められる。すなわち、初期状態で対角線に関して反対称 だったモードが、やがて 1 つの山に統合されていくような遷移状態 の様相を呈している。実際、最終的には図 7 に示したように、変形 モードが対角線方向に発達した 1 つの山に統合されており、第 1 固 有モードを初期たわみをした場合と同一の変形形状となっている。 こうした傾向は、第 3 固有モードを初期たわみ形状として選択した 場合も同様である。

5.まとめ

本研究では、Lagrange 多項式に基づく EFGM を、面内せん断力 を受ける薄板のせん断座屈に適用し、初期たわみ形状の相違と有限 変位挙動の関係ついて調べた。荷重 - 変位曲線については、初期た わみの形状に依らず、類似の変形経路が得られた。座屈荷重につい ては、若干の相違が認められた。変形モードについても、初期たわ みの形状に依らず、荷重レベルの増大とともに、最終的には対角線 方向に1つの山が発達するような形状になることがわかった。特に、 第2および第3 固有モードを初期たわみ形状とした場合、複数の山 が1つの山に統合されていくような遷移領域における挙動について も、比較的良好に捉えることができた。

今後は、更に各種パラメータを種々変化させて解析データの蓄積 を計り、また、有限要素法との比較を通じ、解の定量的な妥当性に ついても検討を行っていく予定である。

図 7. 点 C における変形モード

参考文献

1) Y.Suetake : Element Free Method based on Lagrange Polynomial , J. of Eng. Mech. , ASCE , Vol. 128 , No.2 , pp.231-239 , 2002.2.

- 2) 石山,末武,内田:薄板のせん断座屈問題に対する EFGM 解析,第56回土木学会年次学術講演会,I-B237, pp.474-475,2001.10.
- 3) 伊藤文人: 構造安定論, 技報堂出版株式会社, pp.212-214, 1989.
- 4) 長柱研究委員会:弾性安定要覧,コロナ社,1969.