水和生成物の地下水への溶脱に伴うコンクリートの長期劣化に関する調査

東京電力(株)		蓮本	清二	内田	3 善ク	र	
東電設計(株)	正会員	原	雅人	谷	智之	池谷	貞右
(株)大林組	正会員	斉藤	裕司	三姓	子悟		

1.はじめに

地下水位以下の岩盤に接したコンクリートの長期劣化を考えた場合,コンクリートは岩盤空隙との接触面 からの水和生成物の溶脱に伴い劣化していくと考えられる。しかし,自然環境下におかれたこれらの劣化状 態に関する知見は非常に少ない。本報告では,施工後約70年経過したダムおよび水路トンネル岩着部から コンクリートおよび岩盤のコアを採取し,水和生成物の状況を調査した結果について報告する。

2.調査地点の概要

コアは,施工後約70年経過したダムの基礎部と水路トンネルの岩着部(側壁)より採取した。ダムの基礎岩盤は,安山岩質の火山砕屑岩で,比較的ポーラスな岩盤である。一方,導水路トンネルの周辺岩盤は新鮮な石英閃緑岩であり,非常に硬質・緻密な亀裂性岩盤である。

3 . 調査項目

コンクリートの劣化状態を調査するため,採 取したコアの分析を行った。調査項目は表-1に 示すとおりである。本報告では,特に水和生成 物の溶脱状態の試験結果に着目して報告する。 試料の割付は,中性化試験の結果を参考にして 行った。試料割付を図-1,表-2に示す。

4.試験結果

1)中性化範囲

中性化試験の結果を図-1 に示す。比較的ポーラ スな火山砕屑岩と接しているコンクリートの中性 化範囲は 15mm 程度,硬質・緻密な石英閃緑岩と 接しているものでは,0~5mm 程度であった。 2)水和生成物の構成

X線回折と示差熱分析により調査した水和生 成物の構成を表-3に示す。

比較的ポーラスな火山砕屑岩と接しているコンクリ ート着目すると,地下水の影響が少ないと考えられる 内部側のA-(4)では,CH,CSH,CAH が存在するが,A -(1)(2)(表面から2cmの範囲)ではCH,CAH が消失・ 減少しており,この範囲で溶脱していると判断される。

一方,硬質・緻密な石英閃緑岩と接しているもので は,全体にわたって水和生成物が認められており, 深度方向にも一定の傾向が認められないことから,水 和生成物の構成からは溶脱によるコンクリート劣化は 生じていないと判断される。

キーワード:長期劣化,水和生成物,溶脱

〒110-0015 東京都台東区東上野 3-3-3 / TEL:03-4464-5182 / ttani@tepsco.co.jp / 谷 智之

表-1 調查項目

分類	調査項目	方法			
1. 力学的性能	圧縮強度、弾性係数	JIS A 1107			
2. 材料・配合	骨材の岩種	目視観察			
	配合	セメント協会法(F-18)			
3. 水和組織	中性化範囲	フェノールフタレンを用いた変色範囲			
の変質状態	細孔量と細孔径分布	水銀圧入法			
	水和生成物の構成	X線回折法、熱分析法			
	C-S-HのCa/Siモル比の分布	EPMAによる面分析法			
4. コンクリートが	水質分析	IIS K 0102 IIS K 101 上水試驗決			
置かれていた環境	不負力が	JIS K 0102, JIS K 101, 上水风候伍			

図-1 中性化試験結果と試料割付

表-2 試料の割付

採取箇所	試料名	採取位置	備考
	A-(1)	岩着面から1cm	中性化部
火山砕屑岩	A-(2)	岩着面から1~2cm	若干中性化
	A-(3)	岩着面から4~5cm	未中性化部
	A-(4)	岩着面から8~9cm	未中性化部
	B-(1)	岩着面から1cm	未中性化部
石英閃緑岩	B-(2)	岩着面から2~3cm	未中性化部
	B-(3)	岩着面から3~4cm	未中性化部
	B-(4)	岩着面から4~5cm	未中性化部

当话 封料友		抠 顶位罢	X線回折分析結果					示差熱分析結果	
岩種 火山砕屑岩	PFV17-71	环境位直	CH	CSH	CC	AFm	CAH	CH含有量(%)	CC含有量(%)
火山砕屑岩 -	A-(1)	岩着面から1cm		0	\bigtriangleup			0	4.2
	A-(2)	岩着面から1~2cm		0	\triangle		\triangle	0	1.6
	A-(3)	岩着面から4~5cm	\triangle	0			0	1.8	0
	A-(4)	岩着面から8~9cm	\triangle	0			0	1.7	0
石英閃緑岩 —	B-(1)	岩着面から1cm	0	0	\bigtriangleup	\bigtriangleup	0	6.7	11.6
	B-(2)	岩着面から2~3cm	0	0	\bigtriangleup	\bigtriangleup	0	7.5	8.8
	B-(3)	岩着面から3~4cm	0	0	\bigtriangleup	\triangle	0	5.7	5.8
	B-(4)	岩着面から4~5cm	0	0	\bigtriangleup	\triangle	\triangle	6.7	8.1

表-3 水和生成物の構成

CH:Ca(0H)₂,CSH:CaO・SiO₂・H₂O,CC:CaCO₃, AFm:モノサルフェート, CAH:4CaO・Al₂O₃・13H₂O ◎:多量 ○:中量 △:少量 ブランク:検出されず

3)Ca/Si モル比

EPMAを用いて測定した岩着部の Ca/Si モル比 を図-2 に示す。ポーラス岩盤との接触部では,岩 着面から約15mmの範囲で,Ca/Si モル比が小さ くなっていることが確認できる。一方、緻密な岩 盤との接触部では表面から10~15mmの範囲で, 若干 Ca/Si モル比が小さくなっているものの,そ の程度はダム岩着部に比して小さい。

4)細孔量

水銀圧入法によって測定した細孔量の測定結 果を表-4 に示す。ポーラス岩盤との接触部にお いては,岩着面から20mmの範囲で細孔量が増 加しており,この範囲で溶脱によってコンクリ ートがポーラスになっていると判断される。緻 密な岩盤との接触部では,細孔量に変化は認め られず,溶脱は生じにくいものと判断される。

Harrison (1995)

ポーラス岩盤との接触部 緻密な岩盤との接触部

図-2 EPMA 結果(Ca/Si 比)

表-4 細孔量の測定結果

岩種	試料名	採取位置	細孔容積 [cc/g]	かさ密度 [g/cc]	細孔容積 [cc/cc]
	A-(1)	岩着面から1cm	0.207	1.642	0.340
火山砕屑岩	A-(2)	岩着面から1~2cm	0.149	1.818	0.271
	A-(3)	岩着面から4~5cm	0.108	1.967	0.212
	A-(4)	岩着面から8~9cm	0.118	1.891	0.223
石英閃緑岩	B-(1)	岩着面から1cm	0.122	1.834	0.224
	B-(2)	岩着面から2~3cm	0.103	1.903	0.196
	B-(3)	岩着面から3~4cm	0.117	1.854	0.217
	B-(4)	岩着面から4~5cm	0.13	1.825	0.237

5.考察

以上の調査結果を総合すると,ポーラス岩盤と

の接触部においては,表面から約 20mm の範囲で水和生成物の溶脱が明確に認められた。一方,緻密な岩盤との接触部においては,若干の Ca/Si モル比の低下が認められるものの,他の分析結果からは溶脱の傾向が明確に認められず,溶脱の進行は非常に遅いと判定される。

双方ともに打設後約70年経過しているが溶脱の程度は異なっている。この要因としては,コンクリート と接している岩質の差の他に水理的境界条件の差、すなわちコンクリート-岩盤境界部の地下水の流動状態 の差が考えられる。水路トンネルでは周辺に動水勾配が大きくなる要因がないのに対して,ダムでは背面に 調整池があり,動水勾配が大きいという条件下にある。次年度以降は,地下水下の岩盤と接するコンクリー トの長期劣化について定量的な評価を行い、劣化予測を試みる予定であり、上記の境界条件を十分に分析し た上で実施することとしたい。