(株)鴻池組 正会員 佐野祐一か、マ・リノハ・イト(株) 正会員 秋山 暉(株)松村組 正会員 森中宏和

1.はじめに

大口径の下水道管渠や農業用水管渠を再構築する 「フローリング工法」は、ポリエチレン樹脂製表面 部材および嵌合部材を鋼製リングに組み付け、既設 管渠との間隙に高流動モルタルを充填することによ る製管工法であり(図1),1)大きさ、断面を自由に 成型(製管)できる、2)非開削で施工できる、3)水 替工の必要がほとんどない、等の特徴を有する¹⁾。 さらに、本工法では鋼製リングおよび高流動モルタ ルを構造部材として取り扱うことができるため、既 設管の劣化状況に適した設計により新管と同等以上 の強度に更生できる点が従来の製管工法²⁾と一線を 画すものである。ここでは、本工法による更生管を 対象とした載荷実験結果およびその検証解析を例に 挙げ、本工法による外圧強度への効果について報告 するとともにその耐荷機構について考察を加える。

2. 更生管の載荷実験

載荷実験においては,あらかじめ最大荷重を載荷 した4種類の遠心力鉄筋コンクリート管(元管)を それぞれ更生した管渠(更生管)を対象とし,JIS A 5303において規定されている外圧試験方法に準 じ,供試体に鉛直荷重を載荷して最大荷重を測定し た。図2に載荷実験概略図を,表1に本実験のケー スおよび供試体の諸元を示す。なお,更生管の内径 はそれぞれ元管の流下能力を確保できるように設定 した。

表2に実験の結果を元管の最大荷重,更生管の最 大荷重および本工法による最大荷重の向上率を示す。 表に示されるように4種類とも更生管の最大荷重は 元管の最大荷重を上回っており,最大荷重を経験し た元管に本更生工法を施すことにより健全な元管と 同等以上の外圧強度に回復できること確認した。

図1 フローリング工法の断面図

図2 載荷実験状況(供試体 No.1)

表1 載荷実験ケースおよび供試体諸元

			No.1	No.2	No.3	No.4	No.5
元管内径(mm)			800	800	1200	1500	2000
元管規格(形,種)			B-1	B-1	B-1	C-1	C-1
元管長さ(mm)			500	2430	2430	2360	2360
更生管内径(mm)		726	726	1100	1400	1850	
更:	生部材厚	頂部	31	31	60	60	85
	(mm)	底部	43	43	40	40	65
モルタル強度(N/mm²)			32				
鋼製リン	有効せい(mm)		9	9	15	15	40
	厚さ(mm)		6				
	間隔(mm)		250				
グ	降伏強度(N/mm ²)		330				

表 2 載荷実験結果

	No.1	No.2*	No.3*	No.4*	No.5*
既設管の最大荷重 (kN/m)	59.1	117.7	192.6	184.3	173.5
更生管の最大荷重 (kN/m)	99.5	167.7	211.1	206.1	198.1
最大荷重の向上率	1.67	1.42	1.10	1.12	1.14
			*数值	けっ体の試験	絵里の亚均

キーワード:フローリング工法,管更生、下水管渠,製管工法,管渠内面被覆工法 連絡先:大阪市中央区北久宝寺町3-6-1 Tel:06-6244-3617 Fax:06-6244-3676

土木学会第56回年次学術講演会(平成13年10月)

(1)解析条件

2次元非線形FEM(使用プログラム:WCOMD)を用 いて外圧試験の検証解析を行った。解析の対象はカラー 部がなく,2次元のモデル化が可能な実験No.1に用いた 元管およびその更生管とした。解析は表3に示すように 健全な元管1ケースと更生管3ケース(元管との境界面 が常に付着の場合,引張領域が滑面の場合および常に滑 面である場合)の計4ケースについて,自重を載荷した 後,漸増鉛直荷重をモデル上端部に載荷する条件で実施 した。解析モデルは,図3に示すように横断面の右半分 について, 元管の主筋部分および更生部材の構造体部分 (嵌合部材を除いた鋼製リングとモルタル)をそれぞれ R C 要素として, 元管の被りコンクリート部分をコンク リート要素としてモデル化し,それぞれの非線形特性を 考慮した。また,ケース3および4において,元管と更 生部材との境界にジョイント要素を設置し,境界面が滑 面である状態を表現した。表4に解析条件を示す。なお, 最大荷重を載荷した元管の材料強度については,ひび割 れが生じている箇所のコンクリート部分の引張強度を低 減(1.0N/mm²)し,主筋の強度特性およびコンクリート の圧縮強度は健全な元管と同等とした。

(2)実験検証解析と耐荷機構

図4はモデル上端部における鉛直荷重と鉛直変位の関 係について解析結果を実験結果(No.1)と比較して示し たものである。元管においては,解析結果(ケース1) は載荷実験の荷重 - 変位関係をおおむね表現しているこ とが確認できる。更生管については,ケース2の解析結 果が載荷実験の荷重 - 変位関係を最もよく表現しおり, ケース3および4では剛性,鉛直荷重の最大値ともに実 験に比べて25%以上小さい結果が得られた。

これら結果より,本工法による更生管の強度特性を, 元管と更生部材とを一体として表現した解析により定量 的に評価することが可能であることを確認した。

なお,本報告はパルテム・フローリング工法共同研究 会(芦森エンジニアリング㈱,芦森工業㈱,カジマ・リ ノベイト㈱,㈱鴻池組,小松建設工業㈱,㈱白石,南野 建設㈱,日産建設㈱,㈱松村組)における開発研究成果 の一部をとりまとめたものである。 表3 解析ケース

		元管規格	B型1種		
		元管内径	800mm		
原		元管厚	66mm		
		コンクリート強度	40N/mm ²		
管	主 筋	径	5mm		
		ピッチ	50mm		
		降伏強度*	560N/mm ²		
	:	有効部材厚	12mm		
更		ŧルタル強度	32N/mm ²		
生	鋼製リン	有効せい	9mm		
部		厚	6mm		
材		間隔	250mm		
	グ	降伏強度	330N/mm ²		

表4 解析対象構造物の諸元

*引張強度試験結果より推定

参考文献

1) 芦森工業㈱, 芦森エンジニアリング㈱, 「パルテム・フローリング工法技術資料」, 37p, 2000年7月. 2)横山博一,「下水管路の再構築」, pp89,理工図書, 1999年3月.

120