破砕帯における山岳トンネル交差部の情報化施工

鹿島建設	正会員	須賀 敦
大阪府道路公社	正会員	福井 隆晴
	非会員	平井 敏昭

1.はじめに

箕面有料道路トンネルは、国道423号のバイパス道路 として、大阪市の中心部から北へ約15kmにわたる新 御堂筋線をさらに北に延伸するもので、延長約5.6kmの 道路トンネルである。工事は南北2工区に分けて施工す ることとし、このうち北工区は大阪に向かって延長3073m 各ケースの解析結果と限界値を以下に示す。 のトンネルを箕面市北部の下止々呂美地区から施工する。 本坑の施工は、作業坑方式(全長346m)を採用し、本坑 北坑口から266m地点で本坑に直角に取り付く。 本文は、破砕帯における作業坑と本坑との交差部の3次 元弾性FEM解析結果と計測結果から、設計と施工を比較 し、地山挙動を考察するものである。

2. 地質概要

作業坑口から約200mまでは、大規模な五月山断層系の 影響下にある砂礫主体の大阪層群が分布する。

交差部付近は、基盤岩が超丹波帯の砂岩であるが、細か い節理が発達し指先で剥離するような非常に脆弱な地質 である。湧水が伴うと肌落ちや小崩落が生じやすい不安 定な切羽であるのが特徴である。

3. 交差部の設計について

交差部の設計には、3次元弾性 F E M解析を用いて掘削 ステップごとに応力を照査した。

(1) 地山物性值

解析結果に最も大きな影響を与える弾性係数については、 作業坑の天端沈下量から逆解析で求めた。

弾性係数	ポアソン	単位体積重量	粘着力	内部摩擦角
E(MPa)	比	(k N/m3	C (k Pa)	(°)
500	0 35	21 56	250	25

(2)解析ケース

作業坑と本坑及び30m離れて並行する避難坑との接続 方法として次の2ケースで解析を行った。 十字交差(ケース1)

作業坑から本坑を抜けて直接避難坑へ通じる十字交差 T字交差(ケース2)

作業坑と避難坑とは位置をずらして接続し、本坑とのみ 接続するT字交差

交差部掘削概念図(作業坑から本坑交差部の掘削) B - B 断面 山岳トンネル 破砕帯 3次元弾性FEM解析 交差部 情報化施工 T E L 0727-39-3330 · F A X 0727-39-3331 大阪府箕面市下止々呂美901 箕面トンネル北工区 J V

(3)解析結果
解析に用いた支保部材を以下に示す
吹付けコンクリート厚・250mm
綱制古保工・4200~200~2~12@1000
(1) ゴングリート厚:250mm 鋼製支保工:H200×200×8×12@1000

ロックボルト: TD25×6000@1000

圭 解析结束

	吹付けコンクリート	鋼製支保工	ロックボルト		
	(M P a)	(МРа	(k N)		
十字交差	30	480	250		
T 字交差	13.7	122	175		
限界応力度	13.8	240	180		

解析の結果、十字形交差では隅角部に各応力が集中し 大幅に限界値を超え、ロックボルトについても連絡坑 寄りの天端部が200kNを超える傾向がある。

一方、T字形交差の場合は、限界応力度以下である ので、上記の支保部材を採用した。

図 1に解析結果の一例として、T字形交差の吹付け コンクリート応力の分布を示す。

図中、手前が作業坑を示すが、本坑との接続部のコー ナー部の応力が最も大きくなり、また、最初に掘削す る本坑南側(右手)の方が、反対側(左手)より大き くなる。 凡例(MPa)

吹付けコンクリート応力分布 図 1

4. 交差部の情報化施工

4 - 1 掘削順序

交差部の掘削は、導坑から曲線で入って、縫い返し て切り広げるのが一般的であるが、今回は、解析に より近く、計測も掘削初期から連続して交差部の挙動 を把握することができるように、上半先進ショートベ ンチカット工法で縫い返しをしない加背割りとした。 (図 2参照)

4-2 計測計画

設計の妥当性と交差部の地山の挙動を把握するため に、地中変位計・ロックボルト軸力計・吹付けコンク リート応力計・鋼製支保工応力計を図 3に示す位 置に配置した。

計測位置図

図 3 計測機器配置図

4-3 計測結果

各種計測結果の特徴をまとめると以下の通り。 1) 地中変位

交差部天端の地中変位は、片側(南向き)掘削延長 20m(2D:Dは掘削径)でほぼ収束する。 その後の、反対側(北向き)の掘削の影響はほとんど 変位量として表れない。

図 4に交差部の各計測断面の地中変位分布図を示す。 変位量は8~10mとかなり深い位置まで達しているが 0~3m間で最大値を示しその後、直線的に減少する。 この最大値付近までをゆるみ域ととらえれば、解析値 とほぼ一致する。

2) ロックボルト軸力

片側掘削延長10mで最大値に達し、引張力は50~100kNとなった。

反対向きの掘削でさらに30kN前後増加した。

3) 鋼製支保工

軸力は切羽距離が30m(3D)以上離れても微増する が、曲げモーメントは3D付近で収束する。 北向き掘削による軸力の影響はわずかであり、10% 程度増加したが、曲げ応力には、変化がなかった。 応力は最大で200MPaであった。 4) 吹付けコンクリート応力 掘削延長30mでほぼ収束する。 鋼製支保工と同様な傾向を示す。 応力は最大で12MPaであった。 5) 天端沈下 交点部の天話 (世界)のに14世上を二本、

図 5に示す。(横軸0点は図 3のH1地点を示す) 実測の収束値は35mmで解析値より10mm程度小さかっ た。南北の掘削による割合については、解析では最初 の南向きの掘削で全体の90%に達するが実測では70%が 南向き掘削で、30%が北向き掘削によるものであった。

6) 内空变位

解析では40mm程度であったが、実測では60mmをこ えた。

ただし、南向き掘削で全体の90%ほどに達する。 (図 5参照)

図 5 解析値と実測値との比較(A計測)

4-4 考察

解析では、最初の南向き掘削で応力も変位もT字形 全体の90%に達する結果になったが、実際、各種計測 結果から判断すると、同様の傾向がみられた。 このことから、交差部のグランドアーチは片側掘削に よって、一度、3次元的に分散されて安定すれば、 他方の掘削が交差部に与える影響は小さいといえる。 天端沈下・内空変位については、若干の差異が生じ たが、この理由の一つとして、解析は地山全体を均一 な弾性体とみなしているのに対して、実際の地質は、 破砕された複雑な状態にあったことが考えられる。 また、天端沈下と内空変位の比は、実績ではほぼ 1:2で内空変位のほうが2倍ほど大きくでる傾向が 多かった。 これに対して、解析値の両者の比は1:1.3程度であり 今回採用したポアソン比 =0.35の影響と思われる。

そこで、ポアソン比=0.40として再計算したところ 1:1.7となり、実際の変位量に近くなった。

5. まとめ

交差部の各施工段階での地山の挙動を、3次元弾性 FEM解析で把握し、各種計測による情報化施工で 定性的な地山挙動を確認し、解析結果の妥当性を 評価できた。 各種応力及び変位とも適正に収束し、交差部の安定 は保たれていることから、設計・施工とも妥当であっ たことが、実証された。