# 矩形状連続炭素繊維補強材の重ね継手性能に関する実験

西松建設㈱技術研究所 正会員 椎名 貴快 宇部日東化成㈱岐阜研究所 松野 繁宏 西松建設㈱技術研究所 正会員 伊藤 忠彦 宇部日東化成㈱岐阜研究所 近藤 尚之

### 1. はじめに

シールド発進・到達立坑における土留壁開口部のコンクリート補強材として連続炭素繊維補強材(以下, CFRP)を用いて土留め壁を構築し,直接シールドマシンのカッタービットで切削する工法がある.例えば, 本工法をケーソン立坑に適用する場合,土留め壁コンクリートの場所打ちに伴い,開口部 CFRP 主筋と開口 部周囲の鉄筋との重ね継手,ならびにコンクリート段打ちに伴う CFRP 主筋同士の重ね継手が必要となる. 本研究では,同工法への適用を目的として開発した矩形状 CFRP の重ね継手性能を確認するため, CFRP と |鉄筋及び CFRP 同士の重ね継手を有する梁部材を製作し曲げ載荷実験を実施した.

### 2. 実験概要

#### (1)使用材料

開発した矩形状 CFRP は 熱硬化性 URA 樹脂を含浸成形した PAN 系炭素繊維ロッドに,熱可塑性 PSF 樹脂を被覆した熱可塑性樹脂被 覆 FRP 引抜成形法によって製造される矩形状複合材である(写真 -1参照).特徴として,表面被覆樹脂への凹凸加工により,コンクリ ートとの高い付着性能が期待できる.実験で使用した矩形状 CFRP の仕様諸元を表 - 1 に,コンクリートの配合を表 - 2 に示す.また材 料試験結果を表 - 3(a)(b)(c)に示す.

FTC25 C20 TC15 FTC10 呼称末尾の数値は保証可摂動力 写真 - 1 矩形状 CFRP

(2)供試体諸元

供試体形状は、全長 4.1m,幅 0.25m×高さ 0.35m の長方形断面梁部材であり, せん断支間長有効高 さ比 a/d は 4.3 である.作製した供試体は全 3 体 使用繊維: トレカ T700SC 24K であり, 配筋図は図 - 1 に示すとおりである.

NO.1 は, CFRP(FTC15)を部材引張側全長に配 置した基準供試体である .NO.2 は部材引張側純曲 げ区間に CFRP(FTC15)と異形鉄筋 D22(SD345) の重ね継手を配置した供試体 . NO.3 は NO.2 と同 区間に CFRP(FTC15)同士の重ね継手を配置した 供試体である.なお,重ね継手長は適用対象が仮 設構造物であることを考慮し,許容応力度設計法 の短期割増 1.5 を考慮して 900mm とした.

(3)実験方法

載荷方法は,2000kN 万能試験機を用いて,スパ ン 3500mm,等曲げモーメント区間 900mmの単純 梁対称2点載荷とした.実験では,保証引張強度 相当荷重の 50% 及び 75% で一旦除荷し, その後破 壊に至るまで静的載荷した.

Key Words: 重ね継手, 矩形状 CFRP, 曲げ載荷 連絡先:〒242-8520 神奈川県大和市下鶴間 2570-4

| 表 - 1 | 5 矩形状   | CFRP の | 什様諸元 |
|-------|---------|--------|------|
| 1. 1  | トレ パンパン |        |      |

| 呼 称   | 断面寸法<br>(mm) | 公称断面積<br>(mm <sup>2</sup> ) | 保迟 願力<br>(kN) | 弹性係数<br>(kN/mm <sup>2</sup> ) | 伸び率<br>(%) | $V_f$ (%) |
|-------|--------------|-----------------------------|---------------|-------------------------------|------------|-----------|
| FTC15 | 5.5 × 20.5   | 76.0                        | 147           | 137                           | 1.90       | 55        |

| 表 - 2 コンクリート配合                           |              |      |      |     |     |     |      |                      |
|------------------------------------------|--------------|------|------|-----|-----|-----|------|----------------------|
| スランプ 空気量 W/C s/a 単位量(kg/m <sup>3</sup> ) |              |      |      |     |     |     |      |                      |
| (mm)                                     | (%)          | (%)  | (%)  | W   | С   | S   | G    | $A^*$                |
| 8 ± 2.5                                  | 4.5 ± 1.5    | 53.0 | 42.0 | 156 | 294 | 764 | 1104 | $C \times 0.25^{\%}$ |
| * ポゾリ                                    | * ポゾリス No.70 |      |      |     |     |     |      |                      |

表-3 材料試験結果 (a) 钜形状 CFRP

| 呼利   | 沵  | 最大引張耐力<br>(kN) | 引張強度<br>(N/mm <sup>2</sup> ) | 弾性係数<br>(kN/mm <sup>2</sup> ) | 終局 <b>ひずみ</b><br>(%) | 付着応<br>(N/n | 动度*<br>nm <sup>2</sup> ) |  |
|------|----|----------------|------------------------------|-------------------------------|----------------------|-------------|--------------------------|--|
| FTC1 | 15 | 166            | 2180                         | 147                           | 1.60                 | 10.0        | 23.0                     |  |

\* JSCE-G503-1999 を参考に CFRP のすべり量が 0.002D(=0.033)の時の付着 応力度及び最大付着応力度の値を示す.但し,実験は JSCE-E539-1995 に 準拠している

| (b) 異形鉄筋(SD345) |                     |                      |                      |             |      |  |  |
|-----------------|---------------------|----------------------|----------------------|-------------|------|--|--|
| 哑称              | 断面寸法                | 公称断面積                | 降伏応力度                | 弾性係数        | 伸び率  |  |  |
| ዞር ለባ           | (mm)                | $(mm^2)$             | (N/mm <sup>2</sup> ) | $(kN/mm^2)$ | (%)  |  |  |
| D10             | 9.53                | 71.33                | 379                  | 186         | 20.4 |  |  |
| D22             | 22.2                | 387.1                | 376 193              |             | 21.5 |  |  |
| (c) コンクリート      |                     |                      |                      |             |      |  |  |
| 圧               | 縮強度                 | 리러                   | 引張強度 弾性係数            |             |      |  |  |
| 1)              | N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) |                      | $(kN/mm^2)$ |      |  |  |
|                 | 35.6                | 2                    | 2.90                 |             | 29.4 |  |  |
|                 |                     |                      |                      |             |      |  |  |

TEL. 046-275-0286 FAX. 046-275-6796

## 3. 実験結果

### (1)ひび割れ発生状況

各供試体のひび割れ状況を図 - 2 に示す.

(2)荷重と中央変位の関係

荷重と中央変位の関係を図 - 3に示す.NO.1は 中央変位が96mmの時,載荷点近傍のコンクリー トが圧壊し,梁中央部CFRPひずみが15000µ程度 まで伸びたが,破断には至らなかった.NO.2は,曲げ ひび割れ発生後の剛性がNO.1の2.3倍であった.保証引 張強度相当荷重付近で鉄筋が降伏し,剛性がおよそ 75%低下したが,その後も粘りのある靱性挙動を示し た.NO.3は,ひび割れ発生後の剛性がNO.1の1.2倍で あった.当初,継手部でのCFRPとコンクリートとの付 着力低下に伴う脆性的な破壊が懸念されたが,特に付 着ひび割れの発生もみられず,NO.1同様に良好な結果 を得られた.全ての供試体とも

(3)ひずみ挙動

図 - 4,5に,NO.2及びNO.3における各荷重段階での 継手部でのCFRPと鉄筋のひずみ分布を表す.同図より CFRPは凹形,鉄筋は凸形の傾向がみられた.これは鉄 筋の引張剛性がCFRPよりも大きいためにCFRPの変形 が拘束され,継手中央部で鉄筋の張力分担率がCFRP を上回るためと思われる.NO.3は,左右のひずみ傾向 に大きな差はみられず,順調に伸びていった.材料試 験の結果(表 - 3(a)参照),CFRP終局ひずみが1.6%であ ることからも,CFRPの破断には至らず,終局近くまで CFRPの付着が比較的しっかりしていたと思われる.

4. まとめ

実験の結果,継手補強材の組合せにより,ひび割れ 発生傾向に違いがみられたが,梁耐力は CFRP の保証 引張耐力相当荷重を上回る良好な結果を得られた.従 って開発した矩形状 CFRP は,短期許容応力度法によ る基本定着長を重ね継手長としても,構造部材として 十分な性能を発揮できることを確認できた.

