修正圧縮場理論を適用したRC単柱のせん断解析

武蔵工業大学大学院 学生員 岩本隆生

武蔵工業大学工学部 正会員 吉川弘道

東急建設技術研究所 正会員 宮城敏明

1.はじめに

Collins らにより提案された修正圧縮場理論(以下, MCFT)¹⁾は, 釣合い条件/適合条件/材料構成則を用い, せん断 挙動を解析するマクロモデルと言える.特に, 変形過程における圧縮ストラット角度とコンクリート寄与分を合理的に算 定することができる.これまでは, 主として梁部材に用いられてきた²⁾が, 本研究では, 繰返し大変形を受けるRC橋脚 に適用し,実験結果との比較を行うものである.

2.修正圧縮場理論

MCFT は,ひび割れの発生している RC 要素を連続的な一様要素と考え,その平均応力,平均ひずみに対する要素内のつり合いおよび変形の適合条件を用いて,せん断解析を行うものである.要素に作用するせん断応力 Vを,コンクリートの負担分 V。とせん断補強筋による Vs の累加式とし,式(1)で表される.

 $V = V_c + V_s = \mathbf{s}_1 b j d \cot \mathbf{q} + A_v \mathbf{s}_v j d \cot \mathbf{q} / s \quad \cdot \cdot \cdot (1)$

またコンクリート応力の算出では,テンションスティフニングを考慮した引張応力およびひび割れ面を介して伝達されるせん断強度の小さい値を採用している.なお,引張軟化

式は Collins らの提案した式(2)を用いる.

表-1 対象試験体

$$\mathbf{S}_{1} = \frac{\mathbf{a} \cdot f_{cr}}{1 + \sqrt{500 \mathbf{e}_{r}}} \quad \cdots \quad \cdots \quad (2)$$

ここで, A_v : せん断補強鉄筋断面積, 1: 主引張応力, s: せん断補強筋ピッチ, : 圧縮ストラット角度, 1: 主引張 ひずみ, $f_{cr}(=0.23f'_c^{2/3})$ コンクリートの引張強度(f'c: コンク リートの圧縮強度), $c_u(=0.0035)$: コンクリートの終局圧 縮ひずみ, (=0.7 繰返し載荷): 作用荷重に関する係 数.

3.解析対象と計測区間

対象とした試験体の概要を表-1 と図-1 に示す.これは, 正負交番漸増3回繰返し載荷によってせん断ひび割れの 生じた RC 単柱で,図の様な変位計の配置により,4区間 のせん断ひずみと曲げ変形を測定した.せん断力と曲げ モーメントの分布は,図-1 に示すようになり,曲げモーメント の影響の小さい順に,区間,,,と呼ぶことにする. また,試験体のせん断破壊時の写真より,圧縮ストラット角 度を目測し,MCFT により算出された圧縮ストラット角度 。 との比較を行った.

図-1 せん断応力・曲げモーメント分布作用区間

key words: RC 単柱, せん断挙動,修正圧縮場理論,圧縮ストラット角度,引張軟化曲線 連絡先:〒158-0087 東京都世田谷区玉堤 1-28-1 TEL:03-3703-3111(内線: 3241) FAX:03-5707-1165

-906-

4.解析結果および考察

(1) - 関係

図-2にS12-1の4区間における平均せん断応力 と平 均せん断ひずみ との関係(=V/Ac としている)を図示 した.実験値は区間,,,の順に解析値を下回り, せん断挙動が曲げモーメントによる影響を受けていること がわかる.すなわち,曲げモーメントが増大するとともに (基部に位置するほど),各区間の実験値は,より大きなせ ん断変形となっていくる.

(2) 圧縮ストラット角度

表-2 に3試験体のせん断破壊時におけるひび割れ角 度と解析結果を示す(写真-1参照).実験による目測値お よび解析結果は大略一致し,従来用いられている45°トラ ス理論が適切でないことがわかった.また,曲げせん断耐 力比の増大に伴いひび割れ角度が大きくなる傾向も,本 解析により再現し得ることがわかった.

5.まとめ

MCFTをRC単柱に適用する場合, Collinsらによる引張 軟化式を調整することなく適用が可能であり, 圧縮ストラッ ト角度を良い精度で算出した.また, 大変形繰返し載荷 における曲げ変形とせん断挙動の相互作用のモデルが

次の課題である.

【参考文献】

1) M.P.Collins and D.Mithchell : Prestressed Concrete Structures, PRENTICE HALL INC., 1991

2) 中村・檜垣: 拡張した修正圧縮場理論による RC はり断

面のせん断耐荷力評価,土木学会論文集 No490/V-23, pp157-166, 1994.5

3) 宮城ら: RC 柱にせん断耐力劣化を考慮した変形性能評価手法,コンクリート工学年次論文集, Vol,22,No.3, pp.1507-1512,2000.

 S05-0
 S12-1
 S15-1

 写真-1
 試験体終局写真

表-2 せん断ひび割れ角度比較

試験体記号	_{max} × 1000	_u (deg)	実験目測値 (deg)
S05-0	1.36	30.4 °	24 °
S12-1	0.647	32.6 °	26 °
S15-1	0.274	35.2 °	33 °