試料の採取方法が塩化物イオン量の測定精度に及ぼす影響

1.はじめに

既設コンクリート構造物の健全性の診断は、 100mmのコア供試体を採取し、この供試体を用いて各種試験を実施するのが一般的である.しかしながらこの場合、コア径が大きいため構造物に与える損傷が大きいこと、過密配筋部での採取が困難であること等、種々の制限を受けることが多い.そのため、ドリル削孔や小径コア等による診断方法の開発が進んでいる[1][2].ドリル削孔法は、簡便な機械で塩分分析用の試料が採取できること、小径コア法は、圧縮強度、中性化深さ、塩分分析といった複数の測定ができること等の特徴を有している.

本研究は,コンクリート構造物の塩化物イオン量を測定する方法として,ドリル削孔粉および 25mm 小径コアを用いる方法の精度を検証するために実施した.

2.試験方法

試験は,塩化物イオン量を 0.6kg/m³とした高さ 600mm×長さ 900mm×厚さ 200mm のコンクリートブロックを作製し, 100mm コア, 25mm 小径コアおよび 15mm ドリル削孔粉の 3 方法を用いて試料を採取して,塩化物イオン量の測定を行った.コンクリートの配合および使用材料は,表-1,表-2 に示すとおりとした.コンリートブロックは,コンクリート打込み後,合板型枠を存置した状態でシート養生し,塩分分析用の試料採取前日に脱型した. 試料の採取方法は表-3,図-1 に示すとおりとし,試料の採取方法,採取する試料の長さ(深さ)を変化させ,各々3 試料を採取した. 100mm, 25mm コアについては,乾式カッターを用いて所定の分析長さに切断し,これを標準ふるい 149 μm を全通させるように粉砕し,それから 5.0g をはかり取って塩分分析試料とした.ドリル削孔粉の場合には,削孔時に携帯用集塵機で削孔粉を集塵し,これを標準ふるい 149 μm を全通させるように粉砕し,それから 5.0g をはかり取った.塩化物イオン量の測定は,JCI-SC5(簡易法)に準拠し,電位差滴定法により行い,全塩分量を測定した.

3.試験結果

コンクリートの配合 表-1 単位量(kg/m³) 粗骨材 空気 水セメ 細骨 スラ 最大寸 ンプ 量 ント比 材率 塩化物 セメント 細骨材 混和剤 лk 粗骨材 法(mm) (cm) (%) (%) (%) イオン 165 994 0.938 20 12 4.5 55 46 300 822 0.6

図-1 コア採取,ドリル削孔方向

X = X/11/11/1			
セメント	普通ポルトランドセメント、密度 3.16		
細骨材	大井川産陸砂,密度 2.57		
粗骨材	青梅産硬質砂岩,密度 2.65		
混和剤	AE減水剤 リグニンスルホン酸化合物		
塩化物イオン	NaCl 20%溶液を練り混ぜ水の一部として混入		

表-2 使用材料

表-3 試料の採取方法

試料採取方法	試料の長さ(mm)	試料の数
100㎜ コア(湿式)	20	
25mm コア(湿式)	20,40,60,80	各3試料
15mm ドリル削孔(乾式)	20,40	

キーワード: コンクリート,塩化物イオン,コア,ドリル削孔,小径コア連絡 先:〒179-8914 東京都練馬区旭町1-39-16 03-3977-2241

3.1 小径コアの長さによる影響

25mm 小径コアの採取長さと塩化物イオン量の測定結果の関係を図-2 に示す .図より ,コア長さが 20,40mm の場合には ,測定値のバラツキが大きく ,かつ ,塩化物イオン混入量の 0.6kg/m³より大きな結果となっている .コア長さが 60,80mm ではバラツキも小さく ,混入した塩化物イオン量とほぼ同一の値を示している .

3.2 採取試料の量による影響

100mm コア , 25mm 小径コアおよびドリル削孔において , 採取した試料の質量と塩化物イオン量の測定値との関係を図-3 に示した . 図より , 採取試料の量が少ないと , 測定値のバラツキが大きくなり , 測定される塩化物イオン量が多くなる傾向が認められる . 測定される塩化物イオン量が多くなる原因としては , ドリル削孔法の場合には , ドリルの刃が骨材を避けてセメントペースト部分を多く削り取るためと言われている[1] . 小径コアの場合の原因については今後の検討が必要である .

図-4 は , 塩化物イオン量測定値の偏差平方和を示した ものである . 偏差平方和は , 混入した塩化物イオン量 μ に対する測定値 x_1,x_2,x_3 のズレを表しており , $\{(\mu - x_1)^2 + (\mu - x_2)^2 + (\mu - x_3)^2\}$ にて求めたものである . 図より , 採取試料の量が多いと ,測定値のバラツキが小さくなり ,

100mm コアとほぼ同程度の精度で塩化物イオン量を 測定しようとする場合には約 50g 以上の試料を採取する 必要があることが分かる. すなわち,50g の試料を得る ためには, 25mm 小径コアでは約 50mm の採取長さが,

15mm ドリル削孔では約 130mm の深さまで削孔する 必要があることが分かった.

4.まとめ

ドリル削孔法ならびに 25mm 小径コアでは,削孔深 さが浅い場合には,測定値にバラツキが生じ易い. 100mm,厚さ 20mm の標準的な試験と同等の精度で測 定しようとする場合には, 25mm 小径コアでは約50mmの長さが必要であることが分かった.

今後,試料の数,塩分の簡易測定法,深さ方向の塩分 濃度測定法および塩分以外の情報を同時に得る方法等に ついての検討を行う予定である.

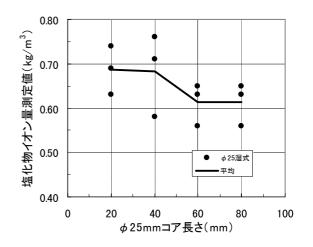


図-2 小径コアの長さと測定値の関係

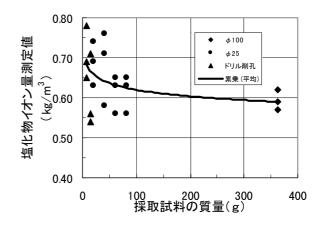


図-3 採取試料の量と測定値の関係

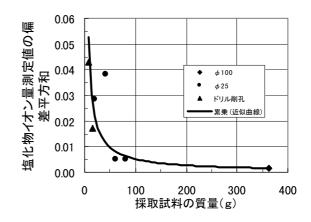


図-4 採取試料の量と測定誤差の関係

[1]湯浅昇, 笠井芳夫, 松井勇: ドリル削孔粉を用いたコンクリート中の塩化物イオン量の現場試験方法の提案, コンクリート工学年次論文報告集, Vol.21,No.2,1999

[2] 寺田謙一,谷川恭雄,中込 昭,佐原晴也:小径コアによる構造体コンクリート強度の推定法,コンクリート工学, Vol.39.No.4,2001