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INTRODUCTION 
In most backcalculation analyses, pavement layer moduli, Ej, which will give computed deflection basin that is very close to the 
measured basin, are obtained by a minimization technique. In this technique, the sum of squares of the differences between 
measured and computed pavement surface deflections are minimized. Backcalculation analysis involves an iteration process 
where computations are repeated while modifying layer moduli until the rate of change of layer moduli is equal to or less than a 
tolerance value. There is, however, a problem on non-uniqueness of the solution. In this research, a regularization technique is 
introduced to improve accuracy of minimization method in order to obtain a stabilized solution. 
 
GENERAL FORMULATION 
The objective function, J, in the minimization could be written as: 

 

                                                    ))(Ez(u))(Ez(u jii
T

n

1i
jiiJ             (1) 

 
On employing Taylor series expansion: 
 
                                                                      z(E + dE) = z(E) + AdE            (2) 
 

where:  E
zA   is nm  matrix with nm  

 
Substituting equation (2) into equation (1) and minimize by partially differentiating J with respect to dE yields: 
 
                                                                                       AdE = u-z(E)            (3) 
 
Substituting x for dE and b for u-z(E) and simplify yields a general expression for linear least-squares problems: 
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The singular value decomposition (SVD) of A is given as: 
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where U = (u1, …, un) and V = (v1, …, vn) are matrices with orthonormal columns, UTU = VTV = VVT = I , and where 

n1 σ,...,σdiag  has non-negative diagonal elements appearing in non-increasing order such that .0σ...σ n1  iσ  are 

singular values of A, while ui and vi  are left and right singular vectors of A, respectively. The condition number of A is equal to 
the ratio .σσ n1   

The solution to the least-squares problem, xLSQ, is given by: 
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It is worth noting that, if the singular value of A decay gradually to zero and the condition number is large, then this problem is 
called a discrete ill-posed problem. The solution, xLSQ, is dominated by the terms in the sum corresponding to the smallest i . As 

a consequence, the solution, xLSQ, has many sign changes and appears completely random. It is difficult to obtain a meaningful 
solution to this problem in a straightforward manner using standard methods in numerical linear algebra such as LU, Cholesky or 
QR factorization. In case of small perturbation of the data used in an ill-posed problem, there will be arbitrarily large perturbation 
of the solution. 
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REGULARIZATION METHODS 
These are practical methods for computing stabilized solutions to the discrete ill-posed problems by diminishing the influence of 
noise. The underlying argument in regularization is the idea that a regularized solution with small norm and suitably small 
residual norm is not too far from the desired, unknown solution to the unperturbed problem underlying the given problem. The 
most common and popular form of regularization is the one known as Tikhonov regularization. The regularized solution λx  is 

defined as the minimizer of the following weighted combination of the residual norm and the side constraint 
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where the regularization parameter, , controls how much weight is given to minimization of 

2
x  relative to minimization of 

residual norm.  
 
Since the purpose of regularization is to dampen or filter out the contributions to the solution corresponding to the small singular 
values, a regularized solution, xreg, can be written as: 
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A good regularization parameter should strike a fair balance between the perturbation error and the regularization error in the 

regularized solution. A plot in log-log scale, for all valid regularization parameters, of the norm 
2regx  of the regularized 

solution versus the corresponding residual norm 
2reg bAx  displays the compromise between minimization of these two 

quantities.  A distinct corner separating the vertical and the horizontal parts of the curve will give the optimum regularization 
parameter.  This corner is a point of maximum slope in the plot. By using optimum regularization parameter, unique solution of 
the problem will be obtained. 
 
EXAMPLE 
A famous ill-posed matrix is used as an example to illustrate the extent of the problem discussed above.  
 
A = (a11, …, aij, …, ann) , where:   aij = 1/(i + j –1), where i = 1, …, n  while j = 1, …, n and n = 10 
 

b = (b1, …, bn),  where bi = 
n

1j
iji ab  

 
The true solution, x, to this problem is given as: x = (1, 1, …,1)  
 
The condition number of A is 1.6E+13, which means smaller perturbation in b will have a bigger effect in the minimization 
solution. In order to clarify this point small errors, b = 1.E-06 & 1.E-05 are introduced in b. Straightforward use of standard 
numerical method and Tikhonov regularization technique were performed and results are shown in Table 1. 
 
Table 1  Least-Square Solutions for Straightforward (S/F) Method and Regularization (R) Technique 

Error 
b  Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

S/F 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
0.E+00 

R 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

S/F 1.00E+00 1.00E+00 9.76E-01 1.24E+00 -2.61E-01 4.78E+00 -5.73E+00 8.00E+00 -2.94E+00 1.92E+00 
1.E-06 

R 1.00E+00 1.00E+00 1.00E+00 9.97E-01 1.00E+00 1.00E+00 1.00E+00 9.96E-01 9.94E-01 1.01E+00 

S/F 1.00E+00 1.01E+00 7.62E-01 3.40E+00 -1.16E+01 3.88E+01 -6.63E+01 7.10E+01 -3.84E+01 1.02E+01 
1.E-05 

R 1.00E+00 9.98E-01 1.01E+00 9.72E-01 9.95E-01 1.05E+00 1.02E+00 9.55E-01 9.41E-01 1.06E+00 

 
CONCLUSION 
It has been shown that the use of Tikhonov regularization can improve accuracy of minimization method and a stabilized solution 
to the least-squares problem can be obtained. 
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