
The vertex singularity in the Sekiguchi-Ohta model 
 

                          東京工業大学 学生会員 ○Pipatpongsa    Thirapong   

                          東京工業大学 正会員   小林 一三  太田 秀樹  

                          神戸大学   正会員   飯塚 敦         

 

1. Introduction 

The Critical state theory incorporated with normality 

criterion has released many numerical implementations in 

soil mechanics. Sekiguchi and Ohta (1977) proposed the 

constitutive model to address the stress anisotropy induced 

during the natural clay deposition in addition to those of 

Cambridge models by introducing the non-negative 

normalized shear stress η* taking principal stresses 

reorientation into account. The expression causes the 

inevitable discontinuity by accommodating the singular 

vertex in stress space. In recent days, Pipatpongsa et al. 

(2001a,b) developed the mathematical treatment for the 

intersecting corner of two continuously differentiable 

convex yield loci; namely, upper and lower yield loci, and 

evaluated theoretical Ko-value and Poisson’s ratio in 

corresponding to the Sekiguchi-Ohta model. However, it is 

not clear the implementation, which is based on the triaxial 

condition, is valid for general conditions. The paper 

discusses the scope of method by considering the existence 

of the vertex in principal stress space and plane strain 

condition. This study may lead to a better understanding of 

the vertex singularity in the model and its implementation. 

2. Deviatoric view of yield surface 

In addition to three stress invariants, the stress-induced 

anisotropic yield function for an inherent isotropic media 

must depend on the state of stress at the completion of 

consolidation. Herein, the invicid form of yield function 

proposed by Sekiguchi and Ohta (1977) is shown by Eq.(1). 
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The set of intersection of the yield surface with π-plane is 

yield curve, which is conveniently given by the expression 

transformed to polar coordinates where θ is angle measured 

anti-clockwise on π-plane. The substitution of θ=const. 

gives the meridional section relating ║s║ and p’. 
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The major principal stress axis at θ=0 locally coincides 
with the major principal direction of stress-induced 
initial anisotropy, in general, the vertical stress direction. 

Fig. 1 shows the plot of Eq.(2). The physical meanings 

of the angle θ are given as following. 
03 ≥θ≥π  for xyz ''' σ≥σ≥σ  ,  compression test: θ=0 

332 π≥θ≥π  for xzy ''' σ≥σ≥σ  
32 π≥θ≥π  for zxy ''' σ≥σ≥σ , extension test: θ=π 

Taking θ=0 and π will cut the Sekiguchi-Ohta yield surface 

by a triaxial plane relating to customary p’-q plane where 

upper and lower yield loci with intersecting corner can be 

observed in Fig. 2. It is clearly seen this particular state of 

stress totally passes the singular vertex ( η*=0) where the 

serious numerical convergence occurs. The corner is 

rounded off for a small rotation δθ ,  indicating the special 

treatment is only required for state of stress under 

axis-symmetry in which the Sekiguchi-Ohta model is 

reduced to the Ohta-Hata model (1971). In the case of 
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Figure 1: Circular yield curves formed by intersection of 
yield surface with planes of constant mean stress 
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plane-strain, the intermediate effective stress is determined 

by Eq.(3), thus diverting the stress condition from the 

vertex. However, Ko-condition can be deduced from 
plane-strain when 0=τ zx , zox K '' σ=σ . 
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Figure 2: p’-q plane relating to meridional section at θ=0 and π 

3. Implementation at the vertex singularity 

Singular yield surfaces with edges or corners may be 

described by a finite number of yield functions based on 

Koiter’s suggestion. Concerning with the Sekiguchi-Ohta 

model, the discontinuity is observed on triaxial plane where 

upper and lower yield locus expressed by Eq.(4),(5) 

intersect each other to form the corner. At the singular 
stress σσσσ in which 0),(),( =α=α σσ LU ff , a consistency 

requirement guarantees the actual values of 0≥γU and 

0≥γL can be determined, then σσσσ must keep on the 

hardening vertex so that 0),(),( =α=α σσ LU ff �� . For a 
certain imposed strain rate in which either 0=γU  or 

0=γL is evaluated, this particular method will reduce to 

the ordinary method applicable to the Sekiguchi-Ohta 

model and the stress point σσσσ will move out of the 

singularity. The basic equations in tensor notation are 

available below. 
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Incremental elastic stress-strain relations: 

( )pεεCσ ��� −•≡         (6) 

Evolution of associated flow rule: Koiter (1953) 

),(),( α∇γ+α∇γ≡ σσε σσ
p

LLUU ff�      (7) 

Consistency requirement at the corner:          (8),(9) 
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From (6)-(9), the manipulation for unknowns is shown by  
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To solve Eq.(10), X(2x2), L(2x1) and consistency parameters 

must be primarily obtained by calculating Eq.(11-13) 

Coupled hardening matrix:     (11) 
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Loading parameters:  Consistency parameters: 
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Tangent elastoplastic moduli: εCσ �� •≡ ep  
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4. Conclusion 

A generalized concept to the Sekiguchi-Ohta yield 

surface possessing the singular point where the gradients of 

yield surface (or potential) to stress space are indeterminate 

is implemented. Though Koiter’s method does not apply to 

the Sekiguchi-Ohta model in stress space, it is particularly 

applied to the intersecting corner of two yield loci 

characterized by the Sekiguchi-Ohta model on Rendulic’s 

stress plane or triaxial plane, where the plane of induced 

anisotropy is coincided, resulting in simple formulation. 
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