粒状体モデルによるトンネル掘削シミュレーションに関する基礎的研究

山口大学大学院 学 安部達也 学 澤江宏徳

山口大学工学部 正 清水則一

Indian Institute of Science 正 T.G.Sitharam

1. はじめに

未固結地山の土被りの浅いトンネルは、不連続体的あるいは粒状体的挙動を示し、トンネルの解析において一般に よく用いられている連続体解析手法では、十分にその挙動を表せないことが知られている.そこで、本研究では未固 結地山のトンネルの力学的挙動のメカニズムを理解するため、個別要素法に基づく粒状体モデルにより、2、3の問 題を解析する.

2. 粒状体解析

2-1. 解析コード "DISC "について

DISCとは粒状体の挙動を,個別要素法を用いてシミュレーションする二次元解析プログラムで,Sitharam(1991) が開発したプログラムコードである¹⁾ このモデルでは,円形粒子同士の接触点を通して粒子間の力の伝達が行われ, 粒子間の接触点には弾性スプリング,粘性ダッシュポット,スライダーを与える(図1参照). 2-2.等方載荷,除荷,再載荷試験^{2),3)}

DISCでは,粒子配合のサンプルとなる粒径加積曲線(図2参照)から任意の20 点を選択し,その粒子の粒径と存在割合を読み取り粒子数を決定し,初期状態を自 動的に作成する.

この集合体の境界に一定の変位速度(11 = 22)を与え続けることで等方載荷を 行い,次の段階で等方載荷により締め固められた状態から,境界応力を徐々に小さ くしていくことで等方除荷を行った.そして,除荷過程において集合体が十分安定 であると考えられる応力状態の点g)から,再び境界に変位速度を与えて等方載荷(再 載荷)を行った.初期状態,および各過程における最終点の集合体の状態を図3に 示す.また,一連の過程における間隙比と平均主応力の関係を図4に示す.ここで, それぞれの粒子の中心方向,接線方向の剛性を,大きい粒子は1.5MN/mmで,小さ い粒子は2.5MN/mmとした.また,すべての粒子間の摩擦係数は0.5としている.

法線方向 接線方向図1 DEMの接触点モデル

 Key Words : DEM, granular model, tunnel, loosening zone
連絡先 〒755-8611 山口県宇部市常盤台2-16-1 山口大学大学院理工学研究科社会建設工学専攻 安部達也 TEL 0836(85)9334 FAX 0836(85)9301 e-mail: b9246@stu.sv.cc.yamaguchi-u.ac.jp 応力とひずみ関係,および体積の変化などを観察した.図5に おいて)は偏差応力と偏差ひずみの関係,)は応力比と 偏差ひずみの関係,)は体積ひずみと偏差ひずみの関係,

)は配位数と偏差ひずみの関係を示している.ここで配位 数とは粒子がもつ接触点の数の平均値である.

この結果からh点,i点,j点の順に剛性が大きく,変形し にくいことがわかる.また,偏差ひずみが0.1付近においてど の集合体も体積ひずみが増加し始め,降伏していることがわ かる.これはダイレイタンシーに基づく挙動である.以上の ように,DISCによって土質試験で得られる挙動と同様な挙 動が再現できることがわかる.

3. 円孔掘削問題

粒状体モデルにおいて円孔掘削を施し,その内部応力分布 を調べることで,連続体との挙動の違いを考察する.粒状体 モデルは500,1000,5000個の要素から成る3つのモデル(以 下500discs,1000discs,5000discsと表記)で行った.

20MPaの等方圧を境界に与えて,十分締固めた状態で,全 体径の0.1および0.2倍程度の円孔を掘削した.掘削後の粒子 の分布と接触力の分布状況を5000discsに対して図6に示す. また、3つのモデルの変位分布を図7に示す、連続体モデル(弾 性解析)の掘削後および粒状体モデルの掘削前後(図6,図7(c) に対応)の内部の応力分布を図8に示す.なお,このグラフ において,縦軸は解析によって得られた。と に対する平 均値で,横軸は円孔中心からの距離をその半径で除して無次 元化している.連続体モデルでは円孔壁面の接線方向応力が 与えた応力の2倍程度の応力集中が見られる.一方,粒状体 モデルでは,円孔周辺の応力が低下し,図7(c)の変位挙動か らも,いわゆる「ゆるみ状態」が発生し,その外に応力が集 中する領域が見られる.すなわち,円孔から比較的離れた領 域でグランドアーチを形成している.その様子は図6(b)の接 触力分布からもうかがえる.

4. 結論

本研究では次のことが示された .1)要素シミュレーション では砂質土の土質実験結果を再現できることがわかった .2) 円孔掘削問題では,ゆるみやアーチアクションが見られた. しかし,それは通常トンネルで考えられるような,円孔に近 い位置で生じる結果とならず,境界条件や解析領域の大きさ に問題があると思われる.

今後は,適切な解析領域と条件について検討する必要があ るが,粒状体解析は,土被りの浅いトンネルの挙動のメカニ ズム解明に有効であると考えられる.

参考文献: 1)T.G.Sitharam: Numerical simulation of hydraulic fracturing in granular media, Ph.D.thesis, Universitiy of Waterloo, Canada, pp. 68-93, pp. 129-135, 1991. 2)M.S.Nimbkar: Constitutive behavior of coarse grained granular media - A discrete element approach, M.Sc.(Engg)Thesis, pp. 40-81, pp 124-127, 1996. 3) 澤江宏徳: 円孔掘削時の粒状体モデルと連続体モデルの力学的挙動の相違と そのメカニズムの考察,山口大学工学部卒業論文,2001.3.

