土 / 水連成 FEM による控え矢板式土留壁の掘削時挙動解析

佐藤工業(株)	正会員	鍋谷 雅司 奥田	雄一
中部電力(株)		中島 英雄 河島	宏治
東京工業大学	正会員	太田 秀樹 宮田	智博

1.はじめに

中部電力(株)碧南火力発電所4・5号機取水槽工事では, 控え矢板形式の鋼管矢板土留により掘削工事が行われた. 控え矢板式土留は,明確な支持点を有する切梁式土留に比 べて地盤の挙動に支配される度合いが大きく,解析モデル の表現能力の差が出やすい構造と考えられる.また,当該 工事では地下水位低下工法を採用しており,土中水の影響 を考慮できる解析手法が要求される.さらに,掘削部の埋 立て石炭灰層は粘性土と砂質土の中間的な材料であり,解 析用物性値の設定が難しいという特徴を有している.

そこで,地下水の影響を考慮できる土/水連成弾塑性 FEM 解析により当該工事のシミュレーションを行い,掘削 解析における入力パラメータの設定法や解析システムのパ フォーマンスに関する検討を実施した.用いた解析コード は,飯塚・太田¹⁾による DACSAR である.

2.除荷時弾性係数算定法

図-1 は,線形弾性体としてモデル化する砂質土の除荷解 析用入力パラメータ(図中)をN値から算定するフロー である.図中(7)のグラフは,砂の即時沈下計算に広く用い られている B.K.Hough の e~log p 関係であり,各ラインは 最小二乗法によりフィッティングしたものである.各ライ ンの傾きを圧縮指数とみなしてN値に対する相関をとった ものが図中(1)式である.N値と原地盤の応力状態から経験 式等を用いて有効応力下の弾性係数を算定する.なお,こ こでは砂の粒子破砕を伴う高圧下の降伏よりも低い応力レ ベルでの載荷・除荷を対象としている.

3. 地盤条件

当該サイトにおける石炭灰層のKo圧密試験結果を図-2に, 地盤物性の深度分布を図-3に示す.石炭灰層の三軸CU試験 とKo圧密試験の結果は, '=34°,Ko=0.44であった.図-1 中の経験式との対応をみると,三軸CU試験の 'と図-1(4) 式により算定される静止土圧係数はKo=0.44となりKo圧密 試験結果とよく一致した.また,地下水位以下の石炭灰層 のN値と図-1(3)式により算定される内部摩擦角は '=35°

図-1 砂質土の除荷時弾性係数算定フロー

となり三軸CU試験結果とよい対応をみせている.図-2より,石炭灰層の正規(NC)と過圧密(OC)時の静止土圧係数 には,Ko_{(OC}/Ko_(NC)=OCR^m,m=0.316の関係がある.一方, 'やKoから図-1(6)式の経験式を用いて算定されるmは0.5 程度となり,石炭灰層ではこれらの経験式よりも過圧密時のKo増加率は小さな傾向を示す結果となった.

4 . 解析条件

最終掘削段階の土 / 水連成FEM解析モデルを図-4に示す.地盤は,洪積粘土層(Dc1)を境に,上部を関口・太田 モデル,下部を線形弾性体とした.弾塑性パラメータは,図-3に示す地盤物性の平均的な値から簡易決定手法²⁾に より求めた.土留壁と控え矢板はビーム材,両者を結ぶタイロッドは地盤と連続しないトラス材とした.

キーワード:掘削,有限要素法,土/水連成,石炭灰,Ko圧密 〒103-8639 東京都中央区日本橋本町 4-12-20 TEL:03-5823-2355 FAX:03-5823-2358

5. 解析結果

図-5 は,1次掘削~最終掘削間の地盤内鉛直変位増分に関する計 測値と解析値の比較である.case-1,2は掘削解析で慣用的に用いられ ている弾性係数, case-3 は砂礫層を図-1 の方法, 粘性土層を孔内水平 載荷試験の 3 倍の弾性係数としたものである.全ケースとも計測値 と同程度の値となっており,慣用法および今回考案した除荷時弾性 係数算定法ともに実用性を有していることが確認された.

図-6 は,最終掘削時の土留壁変位,曲げモーメント,タイロッド 張力に関する計測値と解析値の比較である .case-1 は平均物性 .case-2 は (=1-Cs/Cc)を物性分布の上限値とした場合 a は D.W. 無し b は D.W.

index

1.0

(0 215)

(1.188)

(0.684)

♦ Ko-test

22.6

Cc

(1.009)

(1.031

2.0 0.0

Cs/Cc

(0.100)

(0.080

(0.064)

(0.125)

♦ :Ko-test

0.1 0.2

٥ •

(0.120)

0

計への適用性等について検討していきたい.

【参考文献】

1) Iizuka&Ohta: A determination procedure of input parameters in elasto-viscoplastic finite element analysis, Soils and foundations, vol.27, No3, 1998

2) 太田・鍋谷他:弾・粘塑性有限要素解析の入力パラメータ決定 における一軸圧縮強度の利用,土木学会論文集,No400.1988.

図-5 掘削底地盤の鉛直変位

土木学会第56回年次学術講演会(平成13年10月)