軟岩大空洞における非均質逆解析手法の適用性に関する検討

(株)大林組 正会員 志村友行 武内邦文 五嶋博己

1.はじめに

昨今の都市域への人口や機能集中等,都市部の過密化に伴い地下空間の有効利用に対するニーズが高まり, さらに昨年の大深度地下の公共的使用に関する特別措置法の制定等も

あって,今後,大都市域での深部地下空間利用の重要性は増大することが予想される.関東圏,特に東京・川崎・横浜地区には新第三紀泥 岩層,すなわち土丹層と称される堆積軟岩が広く分布しており,当該 地区でのNATM工法による地下空洞の建設事例も存在する.このよう な空洞の建設において掘削時の岩盤挙動を適切に予測することは,空 洞の安全かつ経済的な設計・施工の確立に向けての重要な課題である.

筆者らは地下空洞建設時における岩盤の非均質挙動が卓越する場合 に適した逆解析手法を開発し,硬岩地山における大規模空洞を対象と した適用性に関して検討した結果,情報化施工の有用な手段となり得 るという知見を得ている¹⁾.

本論文では,このような背景を踏まえ,非均質逆解析手法の軟岩地 下空洞における適用性について,実施工で得られた変位計測データに 基づき検討した結果について報告する.

2.逆解析手法の概要

非均質逆解析手法(非均質 N-DBAP)は,桜井らにより提案さ れたノルム最小化により解を同定する非弾性ひずみを考慮した直 接逆解析手法(N-DBAP)²⁾の定式化を利用しながら,弾性係数 低減率(Ai)を導入することにより地山の非均質層の広がりや力 学特性を定量的に同定することを可能としたものである¹⁾.

本逆解析のフローは図 - 1 に示すとおりであり,繰返し計算を 必要とするが, Aiの収束は比較的良好で,現場計測結 果へも十分適用可能であることが確認されている.

3. 対象地下空洞

検討の対象とした地下空洞は軟岩(第四紀上総層群 泥岩)中に建設された幅約17m,高さ約18m,断面積約 250m²の大空洞であり,上部半断面中央導坑先進多段 ベンチカット工法により施工された³⁾.地質調査に基 づく主要岩盤物性を表-1に示す.施工に際しては地中 変位,内空変位,ロックボルト軸力,および一次覆工 応力等の計測に基づく情報化施工が行われた.図-2は 1つの主計測断面における地中変位の計測結果である.

4.解析結果と考察

図-2 に示す計測変位を入力として,非均質 N-DBAP

キーワード:地下空洞,軟岩,逆解析,空洞安定性予測

連絡先:〒108-8502 東京都港区港南 2-15-2 品川インターシティ B棟, TEL:03-5769-1309, FAX:03-5769-1977

図-1 非均質 N-DBAP のフロー

表-1 主要岩盤物性

湿潤密度(t)	1.9 g/cm ³
一軸圧縮強度(qu)	3.7 MPa
せん断強度(C)	2.2 MPa
内部摩擦角()	5.8 °
変形係数(E)	500 MPa
動ポアソン比(d)	0.374

図-2 地中変位の計測結果

を適用した結果得られた最大せん断ひずみ(γmax)分布の推定結果および初期応力パラメータの同定結果を 直接逆解析法(D-BAP)と比較して図-3に示す.また,その時の非均質 N-DBAPによる弾性係数低減率(Ai) の分布を図-4に示す.図-3によると,D-BAPの結果が概ね環状にγmaxが分布しているのに対して,非均質 N-DBAPでは,天端および側部下方にγmaxの大きな領域が集中している結果となっている.本空洞では第1 ベンチ掘削直後より内空変位が増大し,第2ベンチ以降の掘削による変位の増大が危惧されたため支保の増 強による変位抑制対策が実施されており,非均質 N-DBAPの結果はこの変位の増大を側壁部分で発生した非 弾性領域の広がりによるものとして説明がつく.また,初期応力はDBAPの結果はαx/αyが1.5程度であるの に対し,非均質 N-DBAPではαx/αyが1.1程度であり,現場において評価された側圧係数(0.82)との比較に おいても,より良好な結果となった.

すなわち,図-4 によると Ai はγmax の分布と対応して低下しており,空洞周辺岩盤の非均質挙動とそれに よる内空変位の増大を説明可能であると考えられる.

図-5 は,図-3の結果に基づき空洞掘削完了時におけるymaxの分布を推定したものであり,非均質逆解析の 結果は掘削完了時の側壁から底盤部におけるymaxの集中領域を予測できる結果となっている.

5.まとめ

軟岩内に掘削された地下空洞で計測された変位データに基づき非均質 N-DBAP の適用性を検討した.その 結果より,堆積軟岩の初期応力特性および掘削に伴う岩盤の非弾性挙動の把握についての可能性が示唆され た.したがって,本手法は軟岩空洞掘削時においても情報化施工の有用な手段となり得ると考えられ,今後 は次段階以降の掘削時における地山挙動予測の高精度化等についてさらなる検討を進めていく予定である. (参考文献)

- 1) 武内他:岩盤の非均質性を考慮した逆解析手法の開発とその適用性,土木学会論文集,No.659/III-52, pp.241-252, 2000.
- 2) 桜井他: ノルム最小化法に基づく非弾性ひずみの逆解析,土木学会論文集, No.517/III-31, pp.197-202, 1995.
- 3) 日村他:254m²の超大断面都市NATM, トンネルと地下, 第 31 巻 10 号, pp.37-48, 2000.10.