傾斜地における基礎の引揚支持力特性と現行設計手法の適用性

関西電力㈱	ΤĒ	森永勇	巨
基礎地盤コンサルタンツ㈱	ΤĒ	阪上最一	
同上	ΤĒ	神村	真
同上		西岡北	t志

1. はじめに

傾斜地における基礎引揚支持力には、多くの課題が残されている。筆者らは、鉄塔基礎の傾斜地での引揚 支持力特性を明確にすることを目的に、遠心模型実験装置を用いた実験を行ってきている。用いた地盤は、 現場で最もよく出現する砂質粘性土を対象にモデル化している。実験結果は、現行の設計手法と比較し、設 計手法の問題点を検討した。その結果、現行の設計計算手法は、傾斜地での基礎引揚支持力を過小評価する ことが明らかになった。また、模型地盤断面観察結果から、設計計算結果と実験結果の差異は、破壊面形状 の差異に起因することが示唆された。

2. 試料と模型地盤¹⁾

表 1に試料の物理・強度特性の一覧を示す。試料は砂質粘土に分類される粘性土である。模型地盤は、この試料を所定の密度になるようにつき固めることで作成した。なお、試料には、実地盤の強度・ 変形特性を再現するため、試料重量比で1%のポルトランドセメントを添加した。

図 1 に模型地盤の概念図を示す。模型基礎は拡 底基礎で、縮尺1/50,根入れ深さ100mm,拡底角 度(鉛直より)34°である。埋戻地盤密度は周辺地 盤密度の約80%とした。

項目	数 値
土粒子比重 Gs	2.627
湿潤地盤密度 _t (kg/m ³)	1.67×10^3
含水比w (%)	29.4
内部摩擦角 (°)	19
粘着力 c (kN/m ²)	90.0

表	1	物理・	•	強度特性の-	—暫
L\					

3. 遠心模型結果

模型地盤は作成後、約24時間養生し、遠心加速度 50Gにて基礎引揚試験を実施し、基礎引揚変位量と 引揚荷重を計測した¹⁾。

図 - 1 模型地盤の概念図

図 2に荷重P~変位 関係を示す。P~ 関係
は、地表面傾斜角 によらず、明確なピーク荷重
P_{max}を示し、P_{max}発現以降は の増加に従いPが減
少するひずみ軟化挙動を示す。なお、P_{max}は、 の
増加に従い減少し、P_{max}時の は、 の増加に従い
減少する傾向を示す。

4.設計計算結果と遠心模型実験結果

図 3 に実験結果および設計計算結果の P_{max} ~ 関係を示す。ここで、使用した設計計算手法は、 =0 °: JEC 式²⁾,傾斜地盤:図 4 に示す破壊 面形状を定義して算出したものを、JEC 式で定義 する破壊面形状により算出した結果に対応するよう 補正したものである。 =0 °に対する各 の P_{max} の低下率は、 =20 °:約10%、 =35 °:約30%

キーワード:基礎,引揚支持力,遠心模型実験 連絡先(東京都千代田区九段北 1-11-5 基礎地盤コンサルタンツ㈱ TEL:03-5276-6232,FAX:03-3234-7439)

低下する。一方、設計計算結果では、 =20°:約 30%、 =35°約50%低下する。また、図 5 に =0~35°での破壊面形状を示す(山側の破壊面は 目視による観察からは確認できていない)。谷側の 破壊線は、 の増加に伴い、水平方向に傾斜する傾 向を示す。これから、傾斜地での基礎引揚時の破壊 面形状は、設計で定義される軸対称形状ではないこ とが明らかになった。このため、傾斜地での設計計 算結果は、傾斜地のP_{max}を過小評価するものと考え られる。

5.まとめ

設計計算結果は、傾斜地での基礎の引揚支持力を 10~20%過小評価した。これは、実験で観察された 破壊面形状が、設計で定義される軸対称形状ではな く、より複雑な形状であることに起因していると考

えられる。

义

5

6.課題

上記の実験事実を踏まえた設計手法の確立に向け て、現在、三次元 FEM 解析を実施しているが、ピ ーク支持力と進行性破壊の関連についてさらに詳細 な検討を加えたい。

破壞面形状 (実験結果)

<参考文献 >

- 1) 森永,阪上,神村,西岡:遠心模型実験における実地盤のモデル化手法,平成13年度地盤工学研究発表会概要集,2001(投稿中)等
- 電気学会:電気規格調査会標準規格 送電用支 持物設計標準JEC-127₋₁₉₇₉,pp144-148,電気書院, 1999