東京ガス(株) 幹線メンテナンス技術グループ 酢谷佳尚 防災科学技術研究所 総合防災研究部門 正会員 佐藤正義

1. はじめに

埋設管が傾斜地盤の法線方向に埋設されている場合, 傾斜地盤の一部分が滑り崩壊すると,滑りが発生しな かった地盤と滑り土塊には相対変位が生じ,埋設管は 圧力を受け,ひいては破壊にいたることも懸念される. このような現象を解明するための一環として,ここで は現実に近い状態で遠心実験の模型を作成し,埋設管 の設置位置の違いにより,傾斜地盤の崩壊モードがど のようになるかを検討した.

2. 実験概要

本実験は傾斜地盤の一部が崩壊する場合を模擬した 実験であるため、のり法線方向に長い距離がとれ、か つ法方向に斜面崩壊を発生させられるための距離をも つ,土槽の形状であることが望まれる.そのため,土 槽の内寸法は,長さ 80cm(加振方向,斜面方向長さ), 75cm(奥行き幅,斜面法線方向),深さ35cmで側壁が剛 の土槽を用いた、実際の関東ロームを用いた傾斜地盤 を対象に,模型サイズでのり法線方向 750mm の傾斜地 盤を作成し,その中央部 250mm が崩壊する状況を想定 した遠心実験を行った.遠心実験の試験体概要を図-1 に示す. 傾斜地盤の勾配は1:1.2 とし, 高さは 250mm とした. 埋設管模型は, 外径 12mm, 厚さ 0.12mm で, 材 質はステンレス鋼(SUS304)である.遠心実験は縮尺 1/40 を想定した.材料は、関東ロームをミキサーで練 り混ぜたもので,タンピングによる締固めを行いなが ら傾斜地盤を作成した.傾斜地盤の中央部は両端部よ りも地盤密度と含水比を調整して強度を小さくし、中 央部に大きな滑りを発生させることとした.実験ケー スは表-1 に示す3ケースであり, それぞれ埋設管を傾 斜地盤の(CASE-1)のり肩, (CASE-2)中腹, (CASE-3)の り先に設置した.CASE-1とCASE-3では,遠心加速度上 昇中の 35g と 30g で崩壊が発生した. CASE-2 は, 遠心 加速度 40g で崩壊しなかったので,振動加振を加えた が崩壊しなかったので,さらに遠心加速度を上昇させ て崩壊に至らしめた.

図-1 遠心実験の試験体

表-1 実験ケース

ケース	パイプ 設置位置	実験内容	密度 ρt(g/cm ³)	含水比 w (%)
CASE-1	のり肩	遠心上昇中35g崩壊	1.46 1.47	91
CASE-2	中腹	遠心40g上昇、加震4回 +遠心52g崩壊	1.45 1.50	91
CASE-3	のり先	遠心上昇中30g崩壊	1.48 1.50	88

2. 実験結果

図-2 に斜面のり肩から 30mm 下部で測定した水平・垂 直変位と遠心加速度の時刻歴(CASE-1)を示す.縦軸の 変位は斜面高さ 250mm で正規化し,%で表した.CASE-1 では遠心加速度が約 35g になった約 280 秒から斜面の 水平(D-H1)・鉛直(D-V1)の変位が徐々に増大してゆき, 約 320 秒で崩壊が終了している.鉛直変位(D-V2)は崩 壊していないのり肩後方の変位であり,わずかな沈下 にとどまっている.崩壊後の水平変位は斜面高さの約 35%と非常に大きい.この図より,砂やシルトを使用 した斜面が瞬時に崩壊するのと異なり,粘着力のある 関東ロームを使用した盛土は崩壊するのに約 40 秒程度 という長い時間を要している事が分かる.CASE-2 と CASE-3 は埋設管が崩壊に抵抗したため,60 から 100 秒 とさらに長時間を要した.

キーワート::遠心実験,傾斜地盤,埋設管,崩壊モード

連絡先:防災科学技術研究所総合防災研究部門〒305-0006つくば市天王台 3-1 Tel.0298-56-9138, Fax.0298-52-8512

写真-1 に CASE-1 における傾斜地盤の崩壊状況 , 写 真-2 に傾斜地盤の崩壊断面を示す. 埋設管がのり肩に ある場合は,埋設管の斜面側からテンションクッラッ クが発生し、その下から滑りが発生する、そのため、 埋設管を含んだ滑り土塊は発生しない,写真-1&2には 埋設管が背後の地盤を支えている様子がみられる.傾 斜地盤の支持地盤の強度を比較的大きくしたため,の り先破壊となっている.写真-3に CASE-2の傾斜地盤の 崩壊断面を示す.埋設管が中腹にある場合は,斜面全 体の大きな滑りと埋設管上部にテンションクッラック が発生し、そこから発生する局部的な滑りの2つの崩 壊がみられる.写真-4に CASE-3の傾斜地盤の崩壊断面 を示す.埋設管がのり先にある場合,埋設管がすべり に抵抗したため,滑り線が埋設管の上部を通過して発 生している.実験後の目視によると,埋設管が中腹と のり先にある場合は,実験後の埋設管に目視で確認で きる曲げ変形が残留しており,崩壊により大きな土圧 が発生したことを示している .CASE-1~3の何れの実験 ケースでも、埋設管が傾斜地盤の崩壊に抵抗して、あ る程度の補強材としての役割を果たしている。

4. まとめ

現実に近い状態で遠心実験用の模型を作成し,埋設 管の設置位置の違いにより,傾斜地盤の崩壊モードが どのようになるかを検討した.実験結果は,概ね現実 位近い状況で斜面に滑り崩壊を発生させることができ, 傾斜地盤中の埋設管が崩壊モードに及ぼす影響を把握 できた. <謝辞>

本実験は(財)地震予知総合研究振興会における「地盤の大変形に関 する調査研究」の活動にて実施したものである.実験実施にあたって は,東京電機大学教授 安田進委員長をはじめ委員の方々には,貴重 なご意見・ご指導を賜った.ここに,感謝の意を表します.

写真-1 傾斜地盤の崩壊状況(CASE-1)

写真-2 傾斜地盤の崩壊断面(CASE-1)

写真-3 傾斜地盤の崩壊断面(CASE-2)

写真-4 傾斜地盤の崩壊断面(CASE-3)