スルースゲート直下流での波状跳水の形成

日本大学理工学部	正会員	後藤	浩
日本大学理工学部	正会員	安田	陽一
日本大学理工学部	正会員	大津	岩夫

長方形断面水路の波状跳水の形成条件については、様々な研究者^{1)~0}によって研究がなされているものの研究者 間で異なった結果が示され統一的な見解が得られていない。最近著者らは、長方形断面水路における波状跳水につ いて検討を行い、跳水始端でのフルード数ばかりでなく跳水始端での乱流境界層の発達状態(図 1(a)参照)、アスペ クト比、レイノルズ数によって波状跳水の流況が変化することを明らかにし^{7,8)}、スルースゲートから十分離れた(乱 流境界層が十分発達した)領域に跳水始端が位置した場合の波状跳水の流況および形成条件を明らかにした⁹。

ここでは、跳水始端がスルースゲート直下流(縮流部)に位置した場合[図 1(b)参照]の波状跳水の流況および形成 条件を実験的に明らかにした。そして、スルースゲート直下流(縮流部)に跳水始端が位置した場合の波状跳水の流 況および形成条件がスルースゲートから十分離れた(乱流境界層が十分に発達した)領域に跳水始端が位置した場 合と異なることを示した。その結果、縮流部に跳水始端が位置した場合には、アスペクト比の値の大きさによって 波状跳水が形成される場合と形成されない場合とがあることを示した。

実験 実験は、長方形断面水平水路(B=15.5,40,80cm;B:水路幅)を用いて行った。スルースゲートおよび越流型のゲ ートを用い跳水の形成位置を調整し、常に跳水始端が縮流部に位置するようにした。なお、本実験では波状跳水の 形成に対する粘性の影響が無視できるレイノルズ数 Re が Re 6.5 × 10⁴の流況 ^{7,8)}を対象としている(Re=q/ ;q:単位 幅流量,:動粘性係数)。

流況 流況はスルースゲート直下流に跳水始端が位置した場合とスルースゲートから十分に離れた領域に跳水始 端が位置した場合とで異なり、それぞれアスペクト比 B/h,と跳水始端のフルード数 F,の値によって次のように特徴 |付けられる[F₁= v₁/(gh₁)^{1/2};v₁:跳水始端の断面平均流速,g:重力加速度, h₁:跳水始端水深]。

スルースゲート直下流(縮流部)に跳水始端が位置した場合

1 < B/h, 3~4の場合 1 < F, 1.3~1.4の場合、波状水面が形成される[図 2(a)]。1.3~1.4 F, 1.6~1.7の場合、

B/h

(d)

 \star

一波目で砕波するものの主流が水面に沿うため定常的な水面の凹凸が 下流側に続く[図 2(b)]。F₁ 1.6~1.7 の場合、水面の凹凸の形成は認 められなくなる[図 2(c)]。

3~4 B/h₁ 8~10の場合 F₁ 1.4~1.7の場合、一波目の水面が砕波 するものの主流が水面に沿うため波状水面が形成され下流側に続く [図 2(d)]。F₁ 1.6~1.7 の場合、表面渦を伴う跳水[図 2(e)]が形成さ れる。

なお、縮流部に跳水始端が位置し波状跳水が形成されると、水路側 壁に沿っても水路中央部の場合と同様な波状水面が形成される。

Sluice gate

F₁

大

(c)

跳水、波状跳水、開水路流、スルースゲート、アスペクト比 キーワード 〒101-8308 東京都千代田区神田駿河台 1-8 TEL & FAX.03-3259-0409

1<B/h₁ 3~4の場合

 B/h_1 10 の場合 $F_1 > 1$ で常に表面渦を伴う跳水が形成される[図 2(f)]。 <u>スルースゲートから十分離れた(乱流境界層が十分に発達した)領域に跳水始</u> <u>端が位置した場合</u> 流況は、 F_1 の変化に伴い図 3 のように変化する⁹。すな わち、 $1 < F_1$ F_{1limit} の場合、定常的な波状水面が形成され水面の凹凸が下流側 に続く[図 3(a)]。 $F_{1limit} < F_1$ F_{1u} の場合、一波目の水面が砕波するものの主流 が水面に沿うため定常的な水面の凹凸が下流側に続く[図 3(b)]。なお、 F_1 の 値が F_{1u} の値より大きくなると、表面渦を伴う跳水が形成されるようになる[図

3(c)]。ここに、 F_{1u} は定常的な波状水面を伴う流況が形成されるフルード数の上限値である。また、 B/h_1 3~4 で波状跳水が形成されると水路側壁に沿っても水路中央部と同様な波状水面が形成される。

波状跳水の形成範囲 縮流部に跳水始端が位置した場合および乱流境界層が 十分に発達した領域に跳水始端が位置した場合の各流況の形成範囲は、それぞ

 $h_f(F_1, B/h_1) = 0$ の関係で示され、その結果を図 4 および図 5 に示す。 <u>スルースゲート直下流(縮流部)に跳水始端が位置した場合</u>図 4 に示される ように、アスペクト比の値が B/h_1 10~11 で波状跳水は形成されない。なお、 跳水始端での乱流境界層が発達し、乱流境界層厚さ $/h_1$ の値が 0.25 よりも大 きくなると波状跳水が形成されるようになる ⁸⁾。また、図 4 に示されるよう にアスペクト比の値が小さくなると跳水始端が縮流部に位置しても F_1 1.6~ 1.7 で波状跳水の形成が認められるようになる。

<u>スルースゲートから十分離れた(乱流境界層が十分に発達した)領域に跳水始</u> <u>端が位置した場合</u>図 5 に示されるように、縮流部に跳水始端が位置した場 合とは大きく異なる。すなわち、 F_{1limit} の値は B/h_1 10~11 でアスペクト比の 値が大きくなるに伴って大きくなる。そして、 B/h_1 10~11 では F_1 1.7~1.8 で図 3(a)に示される波状跳水が形成される⁹⁾。また、 F_{1u} の値は B/h_1 14~15 でアスペクト比が大きくなるに伴って大きくなり、 B/h_1 14~15 で F_{1u} = 2.2~ 2.3 となる。

<u>従来の研究との比較</u> 例えば Open Channel Hydraulics¹⁾などによると、波状跳水は F_1 の値が 1~1.7 の範囲で形成されるものとして記述されている。これは、 Bahkmeteff and Matzke²⁾および Bradley and Peterka(Flume F)³⁾の研究結果が引用 されたもので、その実験条件は Re 6.5×10^4 で B/h₁ 4~5 の範囲で跳水始端 は常に縮流部に位置している。図 4 に示されるように、Bahkmeteff and Matzke²⁾および Bradley and Peterka³⁾による各流況の形成に関する実験結果は本 実験結果と同一な領域に存在する。また、跳水始端が縮流部付近に位置し B/h₁

6 の範囲で行われた Ryabenko⁴による実験結果についても本実験結果と同一 な領域に存在する(図 4 参照)。すなわち、アスペクト比とスルースゲートか ら跳水始端までの距離および跳水始端での乱流境界層の発達状態とを考慮す ることによって波状跳水の形成条件に関する各研究者の結果を含めて説明す ることができる。

参考文献

2)Bakhmeteff, B.A. and Matzke, A.E. (1936), The Hydraulic Jump in term of Dynamic Similarity, *Trans.*, ASCE, 101, pp.630-647.

3)Bradley, J.N. and Peterka, A.J. (1957), The Hydraulic Design of Stilling Basins: Hydraulic Jumps on Horizontal Apron (Basin), *Journal of Hydraulic Division*, ASCE, 83(HY5), pp.1401 - 1-1401 - 25.

4)Ryabenko,A.A. (1990), Conditions Favorable to the Exsitence of an Undulating Jump, *Hydrotechnical Construction*, Plenum Publ., pp.762-770.

5)Chanson, H.,and Montes, J.S., Characteristics of Undular Hydraulic Jump:Experimental Apparatus and Flow Patterns, *Journal of Hydraulic Engineering*, ASCE, 121(2), pp.129 ~ 144, 1995.

6)Reinauer, R.,and Hager, W.H.,Non-breaking Undular Hydraulic Jumps, Journal of Hydraulic Research, IAHR, 33(5),pp.1 ~ 16,1995.

7)後藤、安田、大津(1999),波状跳水の形成条件に対するレイノルズ数・アスペクト比の影響,水工学論文集,土木学会,第43巻,pp.299~304.

8)Ohtsu, I., Yasuda, Y. and Gotoh, H. (2001), Hydraulic Condition for Undular-Jump formation, *Journal of Hydraulic Research*, IAHR (to be published).

9)後藤、安田、大津(2001),波状跳水の流況特性,水工学論文集,土木学会,第45巻,pp.439~444.

図 3 スルースゲートから 十分離れた領域に跳水始端 が位置した場合の流況

-289-

¹⁾ V.T.Chow. (1959), Open Channel Hydraulics, McGraw-Hill Book Company International, USA.