オープングレーチング桁吊橋全橋模型風洞試験について

広島県道路公社 正会員 和田直生 広島県正会員渡邉聖 広島県道路公社 正会員 古家和彦 (株)長大 正会員 深谷茂広 日立造船(株) 正会員 植田利夫

1.はじめに

片側に自歩道を有する2車線スパン540mの単径間吊橋について、経済性(吊構造部死荷重:六角形箱桁の8割)や 耐風性から、図1に示すように車道部をオープングレーチング(以下グレーチングと言う)で検討しており、昨年は桁の 部分模型風洞試験を実施し耐風安定化断面を見出した。部分模型風洞試験の結果、断面形状や風の迎角に対して敏感な性 状を示したこと、初めての本格的なグレーチング桁吊橋であることから、より慎重を期して全橋模型風洞試験を実施し、 耐風性を確認した。本文では、全橋模型風洞試験の結果を報告する。

(仮称) 豊島大橋一般図 叉 1

080

2000

200

850

図3 桁断面詳細図

2. 風洞試験結果

模型化は、単径間吊橋であり縮尺を大きくするため中央径間 のみを取り出し、塔は剛体として塔・側径間ケーブルの剛性を 等価なバネに置換して相似させた。

縮尺は1/75であり、模型の外観 を図2に、桁断面の詳細を図3に示 す。さらに、模型の固有振動特性を 表1に示す。構造減衰(対数減衰率

)の目標値は0.02 としたが鉛直た わみ振動では低次モードで 0.04 前後 と大きく、ねじれ振動については対 称1次モード以外は0.015弱と小さな値となっている。

(1) 一様流中での試験結果

一様流・南風(道路側)・傾斜角0°の試験結果を図4に示す。風速 15m / s 以下で高次モードを含む鉛直たわみが発生しているが各振幅は 5 cm 程度と小さい。一方、風速 15m / s 以上で高次モードのねじれ振 動が大きな振幅で発生している。ねじれ対称1次を対象とした部分模型 での試験結果(図5)では、振幅が1°弱であり、全橋模型でのねじれ 対称2次および逆対称2次での振幅はかなり大きい。この原因として、 後述するように構造減衰の違いの影響が大きいことを確認している。

キーワード:単径間吊橋、オープングレーチング桁、全橋模型風洞試験

広島県道路公社 〒730-0015 広島市中区橋本町7番14号 TEL:082-227-8636 FAX:082-227-8691

図 2 風洞試験模型外観(模型縮尺1/75)

模型の固有振動特性 表1

モードNO.	モード名称	固有振動数 (Hz)	対数減衰率 (δ)
1	水平たわみ対称1次モード	1.00	0.139
2	鉛直たわみ逆対称1次モード	1.59	0.040
3	鉛直たわみ対称1次モード	1.86	0.043
4	鉛直たわみ対称2次モード	2.48	0.042
5	鉛直たわみ逆対称2次モード	3.04	0.033
6	水平たわみ逆対称1次モード	2.00	0.106
7	ねじれ対称1次モード	3.56	0.026
8	鉛直たわみ対称3次モード	3.92	0.027
10	ねじれ逆対称1次モード	5.21	0.017
14	鉛直たわみ逆対称3次モード	4.88	0.027
21	ねじれ対称2次モード	6.80	0.012
22	鉛直たわみ対称4次モード	6.16	0.028
32	ねじれ逆対称2次モード	9.11	0.013
40	ねじれ対称3次モード	11.34	0.015
49	ねじれ逆対称3次モード	13.40	0.016
58	ねじれ対称4次モード	15.62	0.019

部分模型で大きな振幅が発生した (傾斜角±3°について、5%境界層) 乱流中での試験を実施した。なお、 気流傾斜角を有する試験は南北のケ ーブルおよび桁支点の高さを変える ことにより桁を一様に3。傾けて行

L/2点 3L/8点 deg) 4 ねじれ逆対称2次 L/2点 3L/8点 4 (deg) ねじれ対称3次 0 ねじれ対称2次 3 3 ねじれ対称3次 ないた振幅 ねじれ対称2次 ねじれ逆対称3次 ないち歳幅 ねじれ逆対称3次 2 ねじれ対称4次 2 ねじれ対称4次 ക +0 0 50 90 20 30 40 50 60 70 80 90 20 40 80 10 10 30 60 ▲速(m/s) 風速(m∕s) 5%境界層乱流(傾斜角-3°) 図9 5%境界層乱流(傾斜角+3°) 図 8

った。試験結果を図8、図9に示すが、振動の発生傾向は傾斜角0°とほぼ同様である。

振幅が比較的大きく発生したねじれ対称2次および逆対称2次を対象として、5%境界層乱流中の傾斜角0°、±3° において減衰付加試験を実施した。図 10 に試験結果を示す。 =0.02 で比較すると、傾斜角 - 3°の場合は部分模型試 験との結果とほぼ同程度であるが傾斜角0°、+3°の場合は部分模型試験の結果より大きめの値となっている。

3. あとがき

今回の試験で、部分模型試験での評価の妥当性を裏付けることが出来た。また、部分模型では1次の振動を対象に試験 を実施したが、照査風速内で発生すると考えられるそれ以外のモードについても検討しておく必要があることを再認識し た。今回のグレーチング桁については、発散振動はないものの風速 20m/s 付近に渦励振が発生しており乱流や減衰を期待 することで問題ない範囲に収まると判断できるが、不確定要素もあり耐風対策について更に慎重に詰めておく必要がある。

最後に、本研究にご指導とご助言をいただいた京都大学 松本勝教授ならびに本橋技術検討委員会 (委員長:京都大学 白石成人名誉教授)の方々に感謝の意を表します。

-731-